`
chenhua_1984
  • 浏览: 1253857 次
  • 性别: Icon_minigender_1
  • 来自: 杭州
文章分类
社区版块
存档分类
最新评论

hadoop学习笔记之七:hadoop与Mongodb结合

阅读更多

          mongodb是NoSQl领域里非常流行的一款非关系型数据库,提供了强大的分片存储与查询功能,用来做历史数据(日志)存储与查询比较适合,本身也提供了mapreduce功能,但是并不是任何时候Mongodb的使用者都会使用分片功能,更大的可能是使用副本集的方式(有时候机器并不多),而Hadoop提供了HDFS和分布式计算的功能,我们可以利用hadoop的MapReduce来取代Mongodb的MapReduce,用Mongodb的副本集来取代Hadoop的HDFS,那么就有了Hadoop与Mongodb之间的连接器(adapter)mongo-hadoop-master项目(目前在github上课可以下载到)

 

      一 :下载地址:https://github.com/mongodb/mongo-hadoop

      二: 下载之后解压:

       

[root@bigdata2 software]# cd mongo-hadoop-master
[root@bigdata2 mongo-hadoop-master]# ll
total 140
drwxr-xr-x 3 root root  4096 Oct 15 11:53 bin
-rw-r--r-- 1 root root  5848 Oct 15 11:53 BSON_README.md
drwxr-xr-x 4 root root  4096 Nov 30 13:06 build
-rwxr-xr-x 1 root root   168 Oct 15 11:53 build-all.sh
-rw-r--r-- 1 root root 12731 Oct 15 11:53 build.gradle
drwxr-xr-x 2 root root  4096 Oct 15 11:53 clusterConfigs
drwxr-xr-x 2 root root  4096 Oct 15 11:53 config
-rw-r--r-- 1 root root  7458 Oct 15 11:53 CONFIG.md
drwxr-xr-x 4 root root  4096 Nov 30 13:06 core
drwxr-xr-x 6 root root  4096 Oct 15 11:53 docs
drwxr-xr-x 7 root root  4096 Oct 15 11:53 examples
drwxr-xr-x 3 root root  4096 Oct 15 11:53 flume
drwxr-xr-x 3 root root  4096 Oct 15 11:53 gradle
-rwxr-xr-x 1 root root  5080 Oct 15 11:53 gradlew
-rw-r--r-- 1 root root  2314 Oct 15 11:53 gradlew.bat
-rw-r--r-- 1 root root  1862 Oct 15 11:53 History.md
drwxr-xr-x 3 root root  4096 Oct 15 11:53 hive
drwxr-xr-x 3 root root  4096 Oct 15 11:53 integration-tests
-rw-r--r-- 1 root root  6764 Oct 15 11:53 mongo-defaults.xml
-rw------- 1 root root  4843 Nov 30 13:12 nohup.out
drwxr-xr-x 3 root root  4096 Oct 15 11:53 pig
-rw-r--r-- 1 root root  5106 Oct 15 11:53 README.md
-rw-r--r-- 1 root root   137 Oct 15 11:53 settings.gradle
drwxr-xr-x 5 root root  4096 Oct 15 11:53 streaming
-rwxr-xr-x 1 root root   682 Oct 15 11:53 test.sh
drwxr-xr-x 2 root root  4096 Oct 15 11:53 tools
[root@bigdata2 mongo-hadoop-master]# 

 

 

    其中Example目录是自带的测试案例,我这里会采用mongo-hadoop-master/examples/treasury_yield 这个案例里面的src/main/resources/下面哦json数据

   

部分数据 写道
{ "_id" : { "$date" : 631238400000 }, "dayOfWeek" : "TUESDAY", "bc3Year" : 7.9, "bc5Year" : 7.87, "bc10Year" : 7.94, "bc20Year" : null, "bc1Month" : null, "bc2Year" : 7.87, "bc3Month" : 7.83, "bc30Year" : 8, "bc1Year" : 7.81, "bc7Year" : 7.98, "bc6Month" : 7.89 }
{ "_id" : { "$date" : 631324800000 }, "dayOfWeek" : "WEDNESDAY", "bc3Year" : 7.96, "bc5Year" : 7.92, "bc10Year" : 7.99, "bc20Year" : null, "bc1Month" : null, "bc2Year" : 7.94, "bc3Month" : 7.89, "bc30Year" : 8.039999999999999, "bc1Year" : 7.85, "bc7Year" : 8.039999999999999, "bc6Month" : 7.94 }
{ "_id" : { "$date" : 631411200000 }, "dayOfWeek" : "THURSDAY", "bc3Year" : 7.93, "bc5Year" : 7.91, "bc10Year" : 7.98, "bc20Year" : null, "bc1Month" : null, "bc2Year" : 7.92, "bc3Month" : 7.84, "bc30Year" : 8.039999999999999, "bc1Year" : 7.82, "bc7Year" : 8.02, "bc6Month" : 7.9 }
{ "_id" : { "$date" : 631497600000 }, "dayOfWeek" : "FRIDAY", "bc3Year" : 7.94, "bc5Year" : 7.92, "bc10Year" : 7.99, "bc20Year" : null, "bc1Month" : null, "bc2Year" : 7.9, "bc3Month" : 7.79, "bc30Year" : 8.06, "bc1Year" : 7.79, "bc7Year" : 8.029999999999999, "bc6Month" : 7.85 }
{ "_id" : { "$date" : 631756800000 }, "dayOfWeek" : "MONDAY", "bc3Year" : 7.95, "bc5Year" : 7.92, "bc10Year" : 8.02, "bc20Year" : null, "bc1Month" : null, "bc2Year" : 7.9, "bc3Month" : 7.79, "bc30Year" : 8.09, "bc1Year" : 7.81, "bc7Year" : 8.050000000000001, "bc6Month" : 7.88 }
{ "_id" : { "$date" : 631843200000 }, "dayOfWeek" : "TUESDAY", "bc3Year" : 7.94, "bc5Year" : 7.92, "bc10Year" : 8.02, "bc20Year" : null, "bc1Month" : null, "bc2Year" : 7.91, "bc3Month" : 7.8, "bc30Year" : 8.1, "bc1Year" : 7.78, "bc7Year" : 8.050000000000001, "bc6Month" : 7.82 }
{ "_id" : { "$date" : 631929600000 }, "dayOfWeek" : "WEDNESDAY", "bc3Year" : 7.95, "bc5Year" : 7.92, "bc10Year" : 8.029999999999999, "bc20Year" : null, "bc1Month" : null, "bc2Year" : 7.91, "bc3Month" : 7.75, "bc30Year" : 8.109999999999999, "bc1Year" : 7.77, "bc7Year" : 8, "bc6Month" : 7.78 }
{ "_id" : { "$date" : 632016000000 }, "dayOfWeek" : "THURSDAY", "bc3Year" : 7.95, "bc5Year" : 7.94, "bc10Year" : 8.039999999999999, "bc20Year" : null, "bc1Month" : null, "bc2Year" : 7.91, "bc3Month" : 7.8, "bc30Year" : 8.109999999999999, "bc1Year" : 7.77, "bc7Year" : 8.01, "bc6Month" : 7.8 }
{ "_id" : { "$date" : 632102400000 }, "dayOfWeek" : "FRIDAY", "bc3Year" : 7.98, "bc5Year" : 7.99, "bc10Year" : 8.1, "bc20Year" : null, "bc1Month" : null, "bc2Year" : 7.93, "bc3Month" : 7.74, "bc30Year" : 8.17, "bc1Year" : 7.76, "bc7Year" : 8.07, "bc6Month" : 7.81 }
{ "_id" : { "$date" : 632448000000 }, "dayOfWeek" : "TUESDAY", "bc3Year" : 8.130000000000001, "bc5Year" : 8.109999999999999, "bc10Year" : 8.199999999999999, "bc20Year" : null, "bc1Month" : null, "bc2Year" : 8.1, "bc3Month" : 7.89, "bc30Year" : 8.25, "bc1Year" : 7.92, "bc7Year" : 8.18, "bc6Month" : 7.99 }
{ "_id" : { "$date" : 632534400000 }, "dayOfWeek" : "WEDNESDAY", "bc3Year" : 8.109999999999999, "bc5Year" : 8.109999999999999, "bc10Year" : 8.19, "bc20Year" : null, "bc1Month" : null, "bc2Year" : 8.09, "bc3Month" : 7.97, "bc30Year" : 8.25, "bc1Year" : 7.91, "bc7Year" : 8.17, "bc6Month" : 7.97 }
{ "_id" : { "$date" : 632620800000 }, "dayOfWeek" : "THURSDAY", "bc3Year" : 8.279999999999999, "bc5Year" : 8.27, "bc10Year" : 8.32, "bc20Year" : null, "bc1Month" : null, "bc2Year" : 8.25, "bc3Month" : 8.039999999999999, "bc30Year" : 8.35, "bc1Year" : 8.050000000000001, "bc7Year" : 8.31, "bc6Month" : 8.08 }
{ "_id" : { "$date" : 632707200000 }, "dayOfWeek" : "FRIDAY", "bc3Year" : 8.23, "bc5Year" : 8.199999999999999, "bc10Year" : 8.26, "bc20Year" : null, "bc1Month" : null, "bc2Year" : 8.199999999999999, "bc3Month" : 8, "bc30Year" : 8.289999999999999, "bc1Year" : 8, "bc7Year" : 8.24, "bc6Month" : 8.01 }
{ "_id" : { "$date" : 632966400000 }, "dayOfWeek" : "MONDAY", "bc3Year" : 8.199999999999999, "bc5Year" : 8.19, "bc10Year" : 8.27, "bc20Year" : null, "bc1Month" : null, "bc2Year" : 8.18, "bc3Month" : 7.99, "bc30Year" : 8.31, "bc1Year" : 7.98, "bc7Year" : 8.25, "bc6Month" : 7.99 }
{ "_id" : { "$date" : 633052800000 }, "dayOfWeek" : "TUESDAY", "bc3Year" : 8.199999999999999, "bc5Year" : 8.18, "bc10Year" : 8.26, "bc20Year" : null, "bc1Month" : null, "bc2Year" : 8.18, "bc3Month" : 7.93, "bc30Year" : 8.289999999999999, "bc1Year" : 7.97, "bc7Year" : 8.23, "bc6Month" : 7.97 }
{ "_id" : { "$date" : 633139200000 }, "dayOfWeek" : "WEDNESDAY", "bc3Year" : 8.289999999999999, "bc5Year" : 8.279999999999999, "bc10Year" : 8.380000000000001, "bc20Year" : null, "bc1Month" : null, "bc2Year" : 8.199999999999999, "bc3Month" : 7.93, "bc30Year" : 8.41, "bc1Year" : 8, "bc7Year" : 8.34, "bc6Month" : 7.99 }
{ "_id" : { "$date" : 633225600000 }, "dayOfWeek" : "THURSDAY", "bc3Year" : 8.32, "bc5Year" : 8.31, "bc10Year" : 8.42, "bc20Year" : null, "bc1Month" : null, "bc2Year" : 8.24, "bc3Month" : 7.95, "bc30Year" : 8.460000000000001, "bc1Year" : 8.029999999999999, "bc7Year" : 8.390000000000001, "bc6Month" : 8.01 }
{ "_id" : { "$date" : 633312000000 }, "dayOfWeek" : "FRIDAY", "bc3Year" : 8.380000000000001, "bc5Year" : 8.380000000000001, "bc10Year" : 8.49, "bc20Year" : null, "bc1Month" : null, "bc2Year" : 8.279999999999999, "bc3Month" : 7.93, "bc30Year" : 8.550000000000001, "bc1Year" : 8.07, "bc7Year" : 8.449999999999999, "bc6Month" : 8.039999999999999 }
{ "_id" : { "$date" : 633571200000 }, "dayOfWeek" : "MONDAY", "bc3Year" : 8.390000000000001, "bc5Year" : 8.390000000000001, "bc10Year" : 8.5, "bc20Year" : null, "bc1Month" : null, "bc2Year" : 8.300000000000001, "bc3Month" : 8, "bc30Year" : 8.539999999999999, "bc1Year" : 8.08, "bc7Year" : 8.449999999999999, "bc6Month" : 8.09 }
{ "_id" : { "$date" : 633657600000 }, "dayOfWeek" : "TUESDAY", "bc3Year" : 8.390000000000001, "bc5Year" : 8.43, "bc10Year" : 8.51, "bc20Year" : null, "bc1Month" : null, "bc2Year" : 8.300000000000001, "bc3Month" : 8, "bc30Year" : 8.550000000000001, "bc1Year" : 8.09, "bc7Year" : 8.470000000000001, "bc6Month" : 8.140000000000001 }
{ "_id" : { "$date" : 633744000000 }, "dayOfWeek" : "WEDNESDAY", "bc3Year" : 8.359999999999999, "bc5Year" : 8.35, "bc10Year" : 8.43, "bc20Year" : null, "bc1Month" : null, "bc2Year" : 8.279999999999999, "bc3Month" : 8, "bc30Year" : 8.460000000000001, "bc1Year" : 8.08, "bc7Year" : 8.390000000000001, "bc6Month" : 8.130000000000001 }
{ "_id" : { "$date" : 633830400000 }, "dayOfWeek" : "THURSDAY", "bc3Year" : 8.35, "bc5Year" : 8.35, "bc10Year" : 8.42, "bc20Year" : null, "bc1Month" : null, "bc2Year" : 8.279999999999999, "bc3Month" : 8.02, "bc30Year" : 8.44, "bc1Year" : 8.09, "bc7Year" : 8.380000000000001, "bc6Month" : 8.130000000000001 }
{ "_id" : { "$date" : 633916800000 }, "dayOfWeek" : "FRIDAY", "bc3Year" : 8.43, "bc5Year" : 8.42, "bc10Year" : 8.5, "bc20Year" : null, "bc1Month" : null, "bc2Year" : 8.369999999999999, "bc3Month" : 8.07, "bc30Year" : 8.51, "bc1Year" : 8.130000000000001, "bc7Year" : 8.460000000000001, "bc6Month" : 8.17 }
{ "_id" : { "$date" : 634176000000 }, "dayOfWeek" : "MONDAY", "bc3Year" : 8.43, "bc5Year" : 8.44, "bc10Year" : 8.529999999999999, "bc20Year" : null, "bc1Month" : null, "bc2Year" : 8.369999999999999, "bc3Month" : 8.08, "bc30Year" : 8.529999999999999, "bc1Year" : 8.15, "bc7Year" : 8.48, "bc6Month" : 8.18 }
{ "_id" : { "$date" : 634262400000 }, "dayOfWeek" : "TUESDAY", "bc3Year" : 8.43, "bc5Year" : 8.49, "bc10Year" : 8.57, "bc20Year" : null, "bc1Month" : null, "bc2Year" : 8.42, "bc3Month" : 8.09, "bc30Year" : 8.58, "bc1Year" : 8.15, "bc7Year" : 8.52, "bc6Month" : 8.17 }
{ "_id" : { "$date" : 634348800000 }, "dayOfWeek" : "WEDNESDAY", "bc3Year" : 8.43, "bc5Year" : 8.51, "bc10Year" : 8.52, "bc20Year" : null, "bc1Month" : null, "bc2Year" : 8.42, "bc3Month" : 8.08, "bc30Year" : 8.57, "bc1Year" : 8.17, "bc7Year" : 8.529999999999999, "bc6Month" : 8.19 }
{ "_id" : { "$date" : 634435200000 }, "dayOfWeek" : "THURSDAY", "bc3Year" : 8.390000000000001, "bc5Year" : 8.449999999999999, "bc10Year" : 8.49, "bc20Year" : null, "bc1Month" : null, "bc2Year" : 8.369999999999999, "bc3Month" : 8.08, "bc30Year" : 8.5, "bc1Year" : 8.130000000000001, "bc7Year" : 8.48, "bc6Month" : 8.18 }
{ "_id" : { "$date" : 634521600000 }, "dayOfWeek" : "FRIDAY", "bc3Year" : 8.24, "bc5Year" : 8.289999999999999, "bc10Year" : 8.31, "bc20Year" : null, "bc1Month" : null, "bc2Year" : 8.25, "bc3Month" : 8.02, "bc30Year" : 8.359999999999999, "bc1Year" : 8.029999999999999, "bc7Year" : 8.34, "bc6Month" : 8.09 }

 

   

  三: 我们查看他的README.md,可以看出 ,需要编译

   

## Building

The mongo-hadoop connector currently supports the following versions of hadoop:  0.23, 1.0, 1.1, 2.2, 2.3, 2.4, 
and CDH 4 abd 5.  The default build version will build against the last Apache Hadoop (currently 2.4).  If you would like to build 
against a specific version of Hadoop you simply need to pass `-PclusterVersion=<your version>` to gradlew when building.

Run `./gradlew jar` to build the jars.  The jars will be placed in to `build/libs` for each module.  e.g. for the core module, 
it will be generated in the `core/build/libs` directory.

After successfully building, you must copy the jars to the lib directory on each node in your hadoop cluster. This is usually one of the
following locations, depending on which Hadoop release you are using:

* `$HADOOP_HOME/lib/`
* `$HADOOP_HOME/share/hadoop/mapreduce/`
* `$HADOOP_HOME/share/hadoop/lib/`

## Supported Distributions of Hadoop

| Hadoop Version                       | Build Parameter         |
| :----------------------------------: | :---------------------: |
| Apache Hadoop 0.23                   | -PclusterVersion='0.23' |
| Apache Hadoop 1.0                    | -PclusterVersion='1.0'  |
| Apache Hadoop 1.1                    | -PclusterVersion='1.1'  |
| Apache Hadoop 2.2                    | -PclusterVersion='2.2'  |
| Apache Hadoop 2.3                    | -PclusterVersion='2.3'  |
| Apache Hadoop 2.4                    | -PclusterVersion='2.4'  |
--More--(49%)

    我们按照下面指令编译:

 

  

./gradlew jar

 

 

   编译过程比较缓慢,下载一个较大的软件是amazon的s3,有250多M,完成以后,会在core/build/libs目录下生成Jar包 mongo-hadoop-core-1.4.0-SNAPSHOT.jar(最大的战斗成果。。) ,我们带上JAVA连接MongoDb的驱动,一起拷贝到$hadoop_home/lib里面 ,当然也可以采用运行时加载的方法

   

  DistributedCache.addFileToClassPath(new Path("/root/software/mongo-java-driver-2.11.1.jar"), conf);
  DistributedCache.addFileToClassPath(new Path("/root/software/mongo-hadoop-core-1.4.0-SNAPSHOT.jar"), conf);

 

 

    有了编译好的驱动,我们就可以用它来连接Mongodb了。

       四:首先我们准备数据,把刚才的数据导入到mongodb

   

mongoimport --host 127.0.0.1 --port 27017 -d testmr -c example --file ./yield_historical_in.json

 

 

      查看数据:

    

写道
> show collections
example
mongotest
system.indexes
> db.example.find().limit(2);
{ "_id" : ISODate("1990-01-02T00:00:00Z"), "dayOfWeek" : "TUESDAY", "bc3Year" :
7.9, "bc5Year" : 7.87, "bc10Year" : 7.94, "bc20Year" : null, "bc1Month" : null,
"bc2Year" : 7.87, "bc3Month" : 7.83, "bc30Year" : 8, "bc1Year" : 7.81, "bc7Year"
: 7.98, "bc6Month" : 7.89 }
{ "_id" : ISODate("1990-01-03T00:00:00Z"), "dayOfWeek" : "WEDNESDAY", "bc3Year"
: 7.96, "bc5Year" : 7.92, "bc10Year" : 7.99, "bc20Year" : null, "bc1Month" : nul
l, "bc2Year" : 7.94, "bc3Month" : 7.89, "bc30Year" : 8.04, "bc1Year" : 7.85, "bc
7Year" : 8.04, "bc6Month" : 7.94 }
>

     五:新建一个MapReduce工程

   

import java.io.IOException;
import java.util.Date;

import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.mapreduce.Mapper;
import org.bson.BSONObject;

public class MongoTestMapper extends Mapper<Object,BSONObject, IntWritable, DoubleWritable> {

                @Override
                public void map(final Object pkey, final BSONObject pvalue,final Context context)
                {
                        final int year = ((Date)pvalue.get("_id")).getYear()+1990;
                        double bdyear  = ((Number)pvalue.get("bc10Year")).doubleValue();
                        try {
                                context.write( new IntWritable( year ), new DoubleWritable( bdyear ));
                        } catch (IOException e) {
                                // TODO Auto-generated catch block
                                e.printStackTrace();
                        } catch (InterruptedException e) {
                                // TODO Auto-generated catch block
                                e.printStackTrace();
                        }
                }
}

  

public class MongoTestReducer extends Reducer<IntWritable,DoubleWritable,IntWritable,BSONWritable>
{
        public void reduce( final IntWritable pKey,
            final Iterable<DoubleWritable> pValues,
            final Context pContext ) throws IOException, InterruptedException{
          int count = 0;
      double sum = 0.0;
      for ( final DoubleWritable value : pValues ){
          sum += value.get();
          count++;
      }

      final double avg = sum / count;

                BasicBSONObject out = new BasicBSONObject();
                out.put("avg", avg);
                pContext.write(pKey, new BSONWritable(out));
        }
}

 

 

这是一个计算平均值的例子的部分代码,之后在Hadoop环境上运行,可以看到输出到Mongodb的结果

 

 

写道
> db.mongotest.find();
{ "_id" : 2080, "avg" : 8.552400000000002 }
{ "_id" : 2081, "avg" : 7.8623600000000025 }
{ "_id" : 2082, "avg" : 7.008844621513946 }
{ "_id" : 2083, "avg" : 5.866279999999999 }
{ "_id" : 2084, "avg" : 7.085180722891565 }
{ "_id" : 2085, "avg" : 6.573920000000002 }
{ "_id" : 2086, "avg" : 6.443531746031742 }
{ "_id" : 2087, "avg" : 6.353959999999992 }
{ "_id" : 2088, "avg" : 5.262879999999994 }
{ "_id" : 2089, "avg" : 5.646135458167332 }
{ "_id" : 2090, "avg" : 6.030278884462145 }
{ "_id" : 2091, "avg" : 5.02068548387097 }
{ "_id" : 2092, "avg" : 4.61308 }
{ "_id" : 2093, "avg" : 4.013879999999999 }
{ "_id" : 2094, "avg" : 4.271320000000004 }
{ "_id" : 2095, "avg" : 4.288880000000001 }
{ "_id" : 2096, "avg" : 4.7949999999999955 }
{ "_id" : 2097, "avg" : 4.634661354581674 }
{ "_id" : 2098, "avg" : 3.6642629482071714 }
{ "_id" : 2099, "avg" : 3.2641200000000037 }
Type "it" for more

 

    

分享到:
评论

相关推荐

    Hadoop学习笔记

    【Hadoop学习笔记】 Hadoop 是一个开源框架,主要用于处理和存储大数据。它源自于解决互联网公司面临的海量数据处理问题,特别是Google发布的三篇技术论文,即GFS(Google File System)、MapReduce以及BigTable。...

    大数据技术学习笔记1

    大数据技术学习笔记1 是一份关于大数据技术的学习笔记,涵盖了大数据技术的基本概念、Hadoop 生态系统、MapReduce 算法、Spark 框架、分布式计算平台等多个方面。 Hadoop 生态系统 Hadoop 是一个基于 Java 的开源...

    大数据学习笔记,学习路线,技术案例整理。.zip

    本资料包“大数据学习笔记,学习路线,技术案例整理”是一个全面的大数据学习资源,旨在帮助初学者和进阶者系统地掌握大数据的核心技术和应用实践。 首先,我们来了解一下大数据的关键概念和技术栈。大数据通常有四...

    《java学习》-Java 大数据学习笔记.zip

    Java大数据学习笔记主要涵盖了一系列与Java编程和大数据技术相关的主题,这些主题对于现代软件开发,尤其是数据密集型应用至关重要。以下是对每个主题的详细解释: 1. **SSH**(Secure Shell):SSH是一种网络协议...

    《IT学习资料3》-Java 大数据学习笔记.zip

    【标题】《IT学习资料3》-Java 大数据学习笔记.zip 这是一份全面的IT学习资源,专为对Java大数据技术感兴趣的学习者而准备。这个压缩包包含了一系列与Java大数据相关的学习材料,旨在帮助你掌握从基础到进阶的各种...

    bigdata笔记1

    "bigdata笔记1"可能包含的是对大数据基础知识、主要技术框架及其应用的概述。以下是一些可能涵盖的重要知识点: 1. **大数据定义**:大数据不仅仅是数据的量大,它还包括数据的多样性、速度和价值。大数据的4V特性...

    Java分布式应用学习笔记

    Java分布式应用学习笔记 在Java世界中,分布式应用是指由多个独立组件通过网络通信协同工作的系统。这种架构模式常用于构建大规模、高可用性、可扩展的系统。本笔记将深入探讨Java分布式应用的核心概念、技术和实践...

    spring-data的学习笔记

    - JPA(Java Persistence API):Java持久层API,用于描述对象与关系型数据库之间的映射关系,并将运行时的实体对象持久化到数据库中。JPA需要由实现者(如Hibernate)提供具体的功能实现。 #### SpringData环境...

    bigdata笔记

    10. 机器学习与人工智能:大数据为AI提供丰富的原料,而AI又为大数据分析提供更高级别的智能。深度学习框架如TensorFlow和PyTorch在大数据场景下训练模型,以实现预测和自动化。 这些笔记可能深入讨论了以上各个...

    henrrywan.github.io:大数据学习笔记

    标题 "henrrywan.github.io:大数据学习笔记" 暗示这可能是一个关于大数据学习的个人博客或项目,发布在GitHub平台上。描述中的链接指向了GitHub和Gitee(中国的GitHub镜像)上的个人页面,表明作者Henry Wan分享了他...

    大数据、数据分析领域工具笔记

    4. MongoDB:文档型数据库,灵活的数据模型,适合半结构化数据存储。 三、大数据处理 1. Spark:快速、通用的大数据处理引擎,提供批处理、交互式查询、流处理和机器学习等功能,比Hadoop MapReduce更高效。 2. ...

    狂神说全部笔记内容.zip.zip

    1. **Java**: 作为最广泛使用的编程语言之一,Java的学习笔记可能包括语法基础、面向对象编程、异常处理、多线程、集合框架、IO流、网络编程等。 2. **Python**: Python以其简洁的语法和强大的库支持而闻名,可能...

    数据库笔记.zip

    - NoSQL DBMS:如MongoDB、Cassandra等,不使用SQL,支持非结构化和半结构化数据。 3. **数据库设计**: - 实体-关系模型(E-R Model):用于数据库的概念设计,通过实体、属性和关系来描述数据。 - 第三范式(3...

    韩顺平各种课题笔记

    7. **人工智能与大数据**:机器学习算法、深度学习框架TensorFlow和PyTorch的使用、大数据处理技术(Hadoop、Spark)等新兴领域,帮助读者紧跟时代潮流。 8. **云计算与物联网**:AWS、Azure、Google Cloud等云平台的...

    大数据图标大全.docx

    32. **Hue**: 提供Web界面,使得用户可以更直观地与Hadoop集群交互,进行数据探索和分析。 33. **Dremio**: 类似于Drill的工具,提供对大数据的自助式访问和加速查询。 34. **Nifi**: 数据流管理工具,用于构建、...

    大数据创建相关笔记,能够很好的了解和学习大数据相关知识

    10. **大数据未来趋势**:人工智能(AI)和机器学习(ML)的结合将进一步推动大数据的发展,边缘计算和云计算也将改变大数据的处理方式。 通过深入阅读这份“大数据笔记”,你将不仅能够了解大数据的基础概念,还能...

    BigDataNotes:ING考试备考笔记

    备考笔记《BigDataNotes》旨在帮助考生深入理解大数据处理的关键环节,虽然它不涵盖SQL以及特定的NoSQL数据库如Cassandra、MongoDB、Document DB、Graph和Key Value Store,但我们可以从以下几个关键知识点出发来...

    毕设云笔记系统.zip

    《毕设云笔记系统》是一款专为毕业设计与课程设计量身打造的云端笔记软件,旨在帮助学生更好地管理和整理他们的学习资料,提高学习与研究效率。这个系统可能包含以下核心功能和关键技术点: 1. **云存储技术**:...

    HCIA-Big Data考试题库.zip

    3. **Hadoop生态系统**:Hadoop是大数据处理的核心框架,包括HDFS(分布式文件系统)和MapReduce(分布式计算)。此外,还有HBase(NoSQL数据库)、Hive(数据仓库工具)、Pig(数据处理语言)等组件。 4. **Spark...

    信创与大数据学院 2131014228 王文娟 13753264331.zip

    结合王文娟同学的课程,可以推测这可能是一个结合理论学习与实践活动的课程,通过参与照片征集活动,学生不仅能够学习信创与大数据的理论知识,还能提升实际操作技能,增强团队协作和创新能力。

Global site tag (gtag.js) - Google Analytics