题意
给出一串数字,m个询问,对于每次询问求出在区间[a,b]上最大值和最小值的差。
思路
水线段树
#include<iostream> #include<cstring> #include<cstdio> using namespace std; const int nMax = 1000010; struct{ int r,l,bg,sm; }node[3*nMax]; int num[nMax]; void build(int left ,int right ,int u){ node[u].l = left; node[u].r = right; if(left == right){ node[u].sm = num[right]; node[u].bg = num[left]; return; } int m = (left + right)>>1; build(left , m , u*2); build(m + 1 , right ,u*2 + 1); node[u].bg = max(node[u*2].bg ,node[u*2 + 1].bg); node[u].sm = min(node[u*2].sm ,node[u*2 + 1].sm); } int query1(int left ,int right ,int u){ if(left == node[u].l &&right == node[u].r){ return node[u].bg; } int m = (node[u].l + node[u].r)>>1; if(right <= m){ return query1(left ,right , u*2); } if(left >= m+1){ return query1(left ,right , u*2 + 1); } int a = query1(left ,m , u*2); int b = query1(m + 1 ,right , u*2 + 1); return max(a ,b); } int query2(int left ,int right ,int u){ if(left == node[u].l &&right == node[u].r){ return node[u].sm; } int m = (node[u].l + node[u].r)>>1; if(right <= m){ return query2(left ,right , u*2); } if(left >= m+1){ return query2(left ,right , u*2 + 1); } int a = query2(left ,m , u*2); int b = query2(m + 1 ,right , u*2 + 1); return min(a ,b); } int main(){ int n ,m ,i ,a ,b ,c ,d; while(scanf("%d%d",&n,&m)!=EOF){ for(i = 1; i <= n; i++){ scanf("%d",&num[i]); } build(1 ,n ,1); while(m--){ scanf("%d%d",&a,&b); c = query1(a ,b ,1); d = query2(a ,b ,1); c -= d; printf("%d\n",c); } } return 0; }
相关推荐
题目中给出的`Main3264.java`文件很可能是实现线段树并解决具体问题的代码。为了更好地理解这个程序,我们需要查看源码,分析其中的类、方法以及它们如何协同工作以满足题目需求。通常,线段树的类会包含构造函数、...
在本教程中,我们将深入探讨线段树的基本概念,以及如何使用Java实现线段树来解决实际问题,如POJ3468题目。 首先,理解线段树的核心在于它的分治思想。线段树将一个大区间(通常是一维数组)分成多个小区间,每个...
在本篇博文中,我们将深入探讨线段树的概念,以及如何实现懒惰更新(Lazy Propagation)策略,同时结合POJ1823问题进行实战应用。懒惰更新是优化线段树性能的关键技巧,它避免了频繁地对每个节点进行更新,从而减少...
标题中的“POJ3277.rar_3277 poj_poj3277_多个面积_线段树”是指一个与编程竞赛相关的压缩文件,特别提到了POJ(Problemset Online Judge)的第3277号问题。POJ是一个著名的在线编程竞赛平台,参与者需要解决各种...
### POJ 2352 Stars - 树状数组与线段树实现 #### 题目背景 POJ 2352 Stars 是一道经典的算法题目,它提供了使用树状数组或线段树来解决的可能性。这两种数据结构都是为了高效处理区间查询问题而设计的。在这篇...
在`poj2823.cpp`源代码中,我们可以看到实现线段树的具体细节,包括如何初始化、更新以及查询线段树。此外,代码可能还包括了问题的输入输出处理,错误检查,以及可能的优化策略,比如lazy propagation(惰性传播)...
POJ2528-Mayor's posters 【区间映射压缩(离散化)+线段树】 解题报告+AC代码 http://hi.csdn.net/!s/83XZJU ========> 我的所有POJ解题报告链接: http://blog.csdn.net/lyy289065406/article/details/6642573
### ACM数据结构之树状数组和线段树 #### 线段树 线段树是一种非常有效的数据结构,主要用于解决区间查询问题。它能够快速地处理区间内的各种操作,如查询、修改等。 ##### 线段树的定义与特性 线段树本质上是一...
- **POJ 3264**:简单的线段树题目,需要求解区间内的最大值和最小值。这种问题通常只需要在线段树的节点中维护最大值和最小值即可。 - **POJ 1151**:结合了线段树和离散化的技巧来求解矩形面积的并集。这需要对...
10. **POJ 2528 线段树.txt**:这是第三个线段树相关的题目,解题报告可能会深入讲解线段树在不同场景下的应用。 通过阅读这些解题报告,你可以学习到各种高级算法的应用,如动态规划、搜索算法、数据结构(如线段...
* 线段树:例如 poj2528、poj2828、poj2777、poj2886、poj2750。 * 静态二叉检索树:例如 poj2482、poj2352。 * 树状树组:例如 poj1195、poj3321。 * RMQ:例如 poj3264、poj3368。 * 并查集的高级应用:例如 ...
- RMQ(区间查询):如`poj3264, poj3368`。 - 并查集的高级应用:如`poj1703, poj2492`。 - **搜索** - 最优化剪枝和可行性剪枝:如`poj3411, poj1724`。 - **动态规划** - 复杂的动态规划:如`poj1191, poj...
描述中提到的“POJ1151 Atlantis的源代码,非常经典线段树应用的题目,求面积。”揭示了问题的核心内容。这是一个涉及到线段树数据结构的编程问题,目标是计算某个区域的面积,可能是在二维平面上。线段树是一种高效...
在本篇中,我们将深入学习二维树状数组的应用,并通过解决POJ 1195问题来实践这一概念。 POJ 1195题目要求我们计算一个二维矩阵中的子矩阵之和。这正是二维树状数组的优势所在,因为我们可以快速地对矩阵的任意矩形...
poj 2763 程序 线段树 LCA 2000MS AC
POJ题解 个人写法 线段树每个人都不一样
* RMQ:POJ3264、POJ3368 * 并查集的高级应用:POJ1703、POJ2492 * KMP算法:POJ1961、POJ2406 * 左偏树(可合并堆) 四、搜索 * 最优化剪枝和可行性剪枝 * 较为复杂的动态规划:POJ1191、POJ1054、POJ3280、POJ...
- (poj2488, poj3083, poj3009, poj1321, poj2251):区间树、线段树等数据结构,用于处理区间查询问题。 6. **字典树(Trie)**: - (poj2513):一种高效的字符串检索数据结构。 ### 四、状态压缩 1. **状态...
在初级阶段的基础上,中级阶段涵盖了更多复杂的数据结构和算法,如差分约束系统、最小费用最大流、双连通分量、强连通分支、最小割模型等,以及线段树、树状数组、RMQ查询等高级数据结构的应用。这些内容进一步深化...