`
jimmee
  • 浏览: 539824 次
  • 性别: Icon_minigender_1
  • 来自: 杭州
社区版块
存档分类
最新评论

4. 内存访问模型的重要性[转载]

阅读更多

在高性能的计算中,我们常说缓存失效(cache-miss)是一个算法中最大性能损失点。 近些年来,我们的处理器处理能力的增长速度已经大大超过了访问主内存的延迟的缩短。 通过更宽的,多通道的总线,到主内存的带宽已经大大增加,但延迟并没有相应显著减少。 为了减少延迟,处理器采用愈加复杂的多层的高速缓存子系统。
在1994年的一篇论文“Hitting the memory wall: implications of the obvious”中描述了这个问题,并且认为由于缓存失效(cache-miss)必定存在,缓存不能最终解决这个问题。我的目标是:向大家展示通过利用访问模型,它是对缓存层次结构的思考,上面的结论并不是必然的。
让我们带着问题,来看下面的例子, 我们的硬件试图通过一些技术来减少主内存的延迟。 内存访问模型主要基于下面三个规律:
1、时间局部性 :最近访问过的内存最可能立马再次被访问;
2、空间局部性:相邻的内存最可能立马再次被访问;
3、 跨越式:内存访问可能会遵循一种可预测的模式。

首先让我们通过一些代码和测试结果,来说明这三个规律的正确性:
1、线性访问情形的内存访问是完全可以预测的;
2、在一个限定的内存区域内做伪随机访问,然后跳到下一个限定内存区域,如此重复。这个“限定内存区域”就是大家所熟知的内存页;。
3、在一个大面积堆内存中伪随机访问。

下面的代码需要添加 -Xmx4g JVM选项运行:

01 public class TestMemoryAccessPatterns {
02  
03     private static final int    LONG_SIZE      = 8;
04     private static final int    PAGE_SIZE      = 2 1024 1024;
05     private static final int    ONE_GIG        = 1024 1024 1024;
06     private static final long   TWO_GIG        = 2L * ONE_GIG;
07     private static final int    ARRAY_SIZE     = (int) (TWO_GIG / LONG_SIZE);
08     private static final int    WORDS_PER_PAGE = PAGE_SIZE / LONG_SIZE;
09     private static final int    ARRAY_MASK     = ARRAY_SIZE - 1;
10     private static final int    PAGE_MASK      = WORDS_PER_PAGE - 1;
11     private static final int    PRIME_INC      = 514229;
12     private static final long[] memory         = new long[ARRAY_SIZE];
13  
14     static {
15         for (int i = 0; i < ARRAY_SIZE; i++) {
16             memory[i] = 777;
17         }
18     }
19  
20     public enum StrideType {
21         LINEAR_WALK {
22  
23             @Override
24             public int next(final int pageOffset, final int wordOffset, finalint pos) {
25                 return (pos + 1) & ARRAY_MASK;
26             }
27         },
28  
29         RANDOM_PAGE_WALK {
30  
31             @Override
32             public int next(final int pageOffset, final int wordOffset, finalint pos) {
33                 return pageOffset + ((pos + PRIME_INC) & PAGE_MASK);
34             }
35         },
36  
37         RANDOM_HEAP_WALK {
38  
39             @Override
40             public int next(final int pageOffset, final int wordOffset, finalint pos) {
41                 return (pos + PRIME_INC) & ARRAY_MASK;
42             }
43         };
44  
45         public abstract int next(int pageOffset, int wordOffset, int pos);
46  
47     }
48  
49     public static void main(final String[] args) {
50         final StrideType strideType;
51  
52         switch (Integer.parseInt(args[0])) {
53             case 1:
54                 strideType = StrideType.LINEAR_WALK;
55                 break;
56             case 2:
57                 strideType = StrideType.RANDOM_PAGE_WALK;
58                 break;
59             case 3:
60                 strideType = StrideType.RANDOM_HEAP_WALK;
61                 break;
62             default:
63                 throw new IllegalArgumentException("Unknown StrideType");
64         }
65  
66         for (int i = 0; i < 5; i++) {
67             perfTest(i, strideType);
68         }
69     }
70  
71     private static void perfTest(final int runNumber, final StrideType strideType) {
72         final long start = System.nanoTime();
73         int pos = -1;
74         long result = 0;
75         for (int pageOffset = 0; pageOffset < ARRAY_SIZE; pageOffset += WORDS_PER_PAGE) {
76             for (int wordOffset = pageOffset, limit = pageOffset + WORDS_PER_PAGE; wordOffset < limit; wordOffset++) {
77                 pos = strideType.next(pageOffset, wordOffset, pos);
78                 result += memory[pos];
79             }
80         }
81         final long duration = System.nanoTime() - start;
82         final double nsOp = duration / (double) ARRAY_SIZE;
83         if (208574349312L != result) {
84             throw new IllegalStateException();
85         }
86         System.out.format("%d - %.2fns %s\n", Integer.valueOf(runNumber), Double.valueOf(nsOp), strideType);
87     }
88 }

 结果:

01 Intel U4100 @ 1.3GHz, 4GB RAM DDR2 800MHz,
02 Windows 7 64-bit, Java 1.7.0_05
03 ===========================================
04 0 2.38ns LINEAR_WALK
05 1 2.41ns LINEAR_WALK
06 2 2.35ns LINEAR_WALK
07 3 2.36ns LINEAR_WALK
08 4 2.39ns LINEAR_WALK
09  
10 0 12.45ns RANDOM_PAGE_WALK
11 1 12.27ns RANDOM_PAGE_WALK
12 2 12.17ns RANDOM_PAGE_WALK
13 3 12.22ns RANDOM_PAGE_WALK
14 4 12.18ns RANDOM_PAGE_WALK
15  
16 0 152.86ns RANDOM_HEAP_WALK
17 1 151.80ns RANDOM_HEAP_WALK
18 2 151.72ns RANDOM_HEAP_WALK
19 3 151.91ns RANDOM_HEAP_WALK
20 4 151.36ns RANDOM_HEAP_WALK
21  
22 Intel i7-860 2.8GHz, 8GB RAM DDR3 1333MHz,
23 Windows 7 64-bit, Java 1.7.0_05
24 =============================================
25 0 1.06ns LINEAR_WALK
26 1 1.05ns LINEAR_WALK
27 2 0.98ns LINEAR_WALK
28 3 1.00ns LINEAR_WALK
29 4 1.00ns LINEAR_WALK
30  
31 0 3.80ns RANDOM_PAGE_WALK
32 1 3.85ns RANDOM_PAGE_WALK
33 2 3.79ns RANDOM_PAGE_WALK
34 3 3.65ns RANDOM_PAGE_WALK
35 4 3.64ns RANDOM_PAGE_WALK
36  
37 0 30.04ns RANDOM_HEAP_WALK
38 1 29.05ns RANDOM_HEAP_WALK
39 2 29.14ns RANDOM_HEAP_WALK
40 3 28.88ns RANDOM_HEAP_WALK
41 4 29.57ns RANDOM_HEAP_WALK
42  
43 Intel i7-2760QM @ 2.40GHz, 8GB RAM DDR3 1600MHz,
44 Linux 3.4.6 kernel 64-bit, Java 1.7.0_05
45 =================================================
46 0 0.91ns LINEAR_WALK
47 1 0.92ns LINEAR_WALK
48 2 0.88ns LINEAR_WALK
49 3 0.89ns LINEAR_WALK
50 4 0.89ns LINEAR_WALK
51  
52 0 3.29ns RANDOM_PAGE_WALK
53 1 3.35ns RANDOM_PAGE_WALK
54 2 3.33ns RANDOM_PAGE_WALK
55 3 3.31ns RANDOM_PAGE_WALK
56 4 3.30ns RANDOM_PAGE_WALK
57  
58 0 9.58ns RANDOM_HEAP_WALK
59 1 9.20ns RANDOM_HEAP_WALK
60 2 9.44ns RANDOM_HEAP_WALK
61 3 9.46ns RANDOM_HEAP_WALK
62 4 9.47ns RANDOM_HEAP_WALK

分析:

这段代码我分别在3种不同的CPU架构中运行,如上面所显示的是intel的各个发展阶段的CPU。 很显然,每一代CPU都拥有更好的降低主内存的延迟的能力。除了相对较小的堆,这个实验是基于上面3个规律。 虽然各个缓存的规模和复杂程度不断提高。 然而由于内存大小的增加,他们变得​​不那么有效了。 例如,在i7-860堆内随机访问时,如果数组容量扩大一倍,达到4GB的大小,平均延迟由大约30ns增加到大约55ns。似乎在线性访问的情形下,不存在内存延迟。 然而当我们以更加随机模式访问内存,延迟时间就更加明显。

在堆内存的随机访问得到一个非常有趣的结果。 这是我们实验中最坏的场景,在这些给定的系统硬件规格情况下,我们分别得到150ns,65ns,75ns的内存控制器(memory controller)和内存模块的延迟。 对Nehalem处理器(i7-860),我们可以用4GB的array去进一步测试缓存子系统,平均每次的结果大约55ns;

i7-2760QM具有更大的负载缓存(load buffer),TLB缓存(TLB caches),并且Linux运行在一个透明的大内存页环境下,大内存分页本身可以进一步降低延迟。通过改变代表访问步幅的素数值(译者注:程序中的 PRIME_INC),发现不同的处理器类型得到的结果差异更大。例如:Nehalem CPU 并且PRIME_INC = 39916801 。 我们在这样一个拥有更大的堆的Sandy Bridge(译者注:Sandy Bridge为Intel推出处理器,该处理器采用32nm制程。Sandy Bridge(之前称作Gesher)是Nehalem的继任者)场景下来测试;

最主要是更大程度上消除了内存访问的可预测性的影响;和在降低主内存延迟上更好的缓存子系统。 让我们来看看在这些缓存子系统中的一些小细节,来理解所观察到的结果。

硬件组件:

在考虑降低延迟的时候,我们使用多层的缓存加上预加载(pre-fetchers); 在本节中,我会尽量覆盖为了降低延迟,我们已经在使用的主要组件,包括硬件和系统软件;我们将使用perf(译者注:Perf Event 是一款随Linux 内核代码一同发布和维护的性能诊断工具)和Lightweight Performance Counters工具来研究这些延迟降低组件,这些工具可以在我们执行代码的时候,获取CPU的性能计数器(Performance counters ),来告诉我们这些组件有效性。我这里使用的是特定于Sandy Bridge性能计数器(Performance counters)

 数据高速缓存:

处理器通常有2层或3层的数据缓存。 每一层容量逐渐变大,延迟也逐渐增加。 最新的intel 3.0GHz的CPU处理器是3层结构(L1D,L2,L3),大小分别是32KB,256KB和4-30MB,延迟分别约为1ns,4ns,15ns。

数据缓存是高效的具有固定数量插槽(sorts)硬件哈希表。每个插槽(sort)对应一个哈希值。 这些插槽通常称为“通道、路(ways)”。一个8路组相联(译者注:CPU缓存)的缓存有8个插槽,来保存哈希值在同一个缓存位置的地址。 数据缓存中的这些插槽(sort)里并不存储的字(word),它们存储多个字( multiple words)的缓存行(cache-lines )。 在intel处理器中缓存行(cache-lines )通常是64字节(64-bytes),对应到64位的机器上8个字(word)。 这极好的满足相邻的内存空间最可能立马需要访问的空间规律,最典型的场景是数组或者对象的字段;

数据缓存通常是LRU的方式失效。 缓存通过一个回写算法工作,只有当被修改的缓存行失效的时候,修改的值才会回写到主内存中。 这样会产生一个有趣的现象,一个load操作可能会引发一个回写操作,将修改的值写回主内存;

01 perf stat -e L1-dcache-loads,L1-dcache-load-misses java -Xmx4g TestMemoryAccessPatterns $
02  
03  Performance counter stats for 'java -Xmx4g TestMemoryAccessPatterns 1':
04      1,496,626,053 L1-dcache-loads
05        274,255,164 L1-dcache-misses
06          #   18.32% of all L1-dcache hits
07  
08  Performance counter stats for 'java -Xmx4g TestMemoryAccessPatterns 2':
09      1,537,057,965 L1-dcache-loads
10      1,570,105,933 L1-dcache-misses
11          #  102.15% of all L1-dcache hits
12  
13  Performance counter stats for 'java -Xmx4g TestMemoryAccessPatterns 3':
14      4,321,888,497 L1-dcache-loads
15      1,780,223,433 L1-dcache-misses
16          #   41.19% of all L1-dcache hits
17  
18 likwid-perfctr -C 2 -g L2CACHE java -Xmx4g TestMemoryAccessPatterns $
19  
20 java -Xmx4g TestMemoryAccessPatterns 1
21 +-----------------------+-------------+
22 |         Event         |   core 2    |
23 +-----------------------+-------------+
24 |   INSTR_RETIRED_ANY   | 5.94918e+09 |
25 | CPU_CLK_UNHALTED_CORE | 5.15969e+09 |
26 | L2_TRANS_ALL_REQUESTS | 1.07252e+09 |
27 |     L2_RQSTS_MISS     | 3.25413e+08 |
28 +-----------------------+-------------+
29 +-----------------+-----------+
30 |     Metric      |  core 2   |
31 +-----------------+-----------+
32 |   Runtime [s]   |  2.15481  |
33 |       CPI       | 0.867293  |
34 | L2 request rate |  0.18028  |
35 |  L2 miss rate   | 0.0546988 |
36 |  L2 miss ratio  | 0.303409  |
37 +-----------------+-----------+
38 +------------------------+-------------+
39 |         Event          |   core 2    |
40 +------------------------+-------------+
41 | L3_LAT_CACHE_REFERENCE | 1.26545e+08 |
42 |   L3_LAT_CACHE_MISS    | 2.59059e+07 |
43 +------------------------+-------------+
44  
45 java -Xmx4g TestMemoryAccessPatterns 2
46 +-----------------------+-------------+
47 |         Event         |   core 2    |
48 +-----------------------+-------------+
49 |   INSTR_RETIRED_ANY   | 1.48772e+10 |
50 | CPU_CLK_UNHALTED_CORE | 1.64712e+10 |
51 | L2_TRANS_ALL_REQUESTS | 3.41061e+09 |
52 |     L2_RQSTS_MISS     | 1.5547e+09  |
53 +-----------------------+-------------+
54 +-----------------+----------+
55 |     Metric      |  core 2  |
56 +-----------------+----------+
57 |   Runtime [s]   | 6.87876  |
58 |       CPI       | 1.10714  |
59 | L2 request rate | 0.22925  |
60 |  L2 miss rate   | 0.104502 |
61 |  L2 miss ratio  | 0.455843 |
62 +-----------------+----------+
63 +------------------------+-------------+
64 |         Event          |   core 2    |
65 +------------------------+-------------+
66 | L3_LAT_CACHE_REFERENCE | 1.52088e+09 |
67 |   L3_LAT_CACHE_MISS    | 1.72918e+08 |
68 +------------------------+-------------+
69  
70 java -Xmx4g TestMemoryAccessPatterns 3
71 +-----------------------+-------------+
72 |         Event         |   core 2    |
73 +-----------------------+-------------+
74 |   INSTR_RETIRED_ANY   | 6.49533e+09 |
75 | CPU_CLK_UNHALTED_CORE | 4.18416e+10 |
76 | L2_TRANS_ALL_REQUESTS | 4.67488e+09 |
77 |     L2_RQSTS_MISS     | 1.43442e+09 |
78 +-----------------------+-------------+
79 +-----------------+----------+
80 |     Metric      |  core 2  |
81 +-----------------+----------+
82 |   Runtime [s]   |  17.474  |
83 |       CPI       |  6.4418  |
84 | L2 request rate | 0.71973  |
85 |  L2 miss rate   | 0.220838 |
86 |  L2 miss ratio  | 0.306835 |
87 +-----------------+----------+
88 +------------------------+-------------+
89 |         Event          |   core 2    |
90 +------------------------+-------------+
91 | L3_LAT_CACHE_REFERENCE | 1.40079e+09 |
92 |   L3_LAT_CACHE_MISS    | 1.34832e+09 |
93 +------------------------+-------------+

注 :随着更随机的访问,结合L1D,L2和L3的缓存失效率也显著增加。

 转换后援存储器(TLB)(译者注:TLB

我们的程序通常使用需要被翻译成物理内存地址的虚拟内存地址。 虚拟内存系统通过映射页(mapping pages)实现这个功能。 对内存的操作我们需要知道给定页面的偏移量和页大小。页大小通常情况从4KB到2MB,以至更大。 Linux的介绍Transparent Huge Pages表明在2.6.38内核中使用2 MB的页大小。虚拟内存页到物理页的转换关系维护在页表(page table)中 。 这种转换可能需要多次访问的页表,这是一个巨大的性能损失。 为了加快查找,处理器有为​每一级缓存都配备一个更小的硬件缓存,称为TLB缓存。 TLB缓存失效的代价是非常巨大的,因为页表(page table)可能不在附近的数据缓存中。 通过使用更大的页,TLB缓存可以覆盖更大的地址范围。

01 perf stat -e dTLB-loads,dTLB-load-misses java -Xmx4g TestMemoryAccessPatterns $
02   Performance counter stats for 'java -Xmx4g TestMemoryAccessPatterns 1':
03      1,496,128,634 dTLB-loads
04            310,901 dTLB-misses
05                #    0.02% of all dTLB cache hits
06   Performance counter stats for 'java -Xmx4g TestMemoryAccessPatterns 2':
07       1,551,585,263 dTLB-loads
08            340,230 dTLB-misses
09               #    0.02% of all dTLB cache hits
10   Performance counter stats for 'java -Xmx4g TestMemoryAccessPatterns 3':
11      4,031,344,537 dTLB-loads
12      1,345,807,418 dTLB-misses
13               #   33.38% of all dTLB cache hits

注:当使用大页时,仅仅在随机访问整个堆的场景下,TLB缓存失效才非常明显;

 硬件预加载(Pre-Fetchers):

硬件会去尝试预测程序中的下一次访问的内存,去选择并加载到缓存区。最简单的方式是根据空间局域性,预加载相邻近的缓存行,或者通过识别基于有规律步幅访问模式,通常步幅长度小于2KB。 在下面的测试中,我们将测量命中通过预加载加载到缓冲区数据的次数

01 likwid-perfctr -C 2 -g LOAD_HIT_PRE_HW_PF:PMC0 java -Xmx4g TestMemoryAccessPatterns $
02 java -Xmx4g TestMemoryAccessPatterns 1
03 +--------------------+-------------+
04 |       Event        |   core 2    |
05 +--------------------+-------------
06 | LOAD_HIT_PRE_HW_PF | 1.31613e+09 |
07 +--------------------+-------------+
08 java -Xmx4g TestMemoryAccessPatterns 2
09 +--------------------+--------+
10 |       Event        | core 2 |
11 +--------------------+--------+
12 | LOAD_HIT_PRE_HW_PF | 368930 |
13 +--------------------+--------+
14 java -Xmx4g TestMemoryAccessPatterns 3
15 +--------------------+--------+
16 |       Event        | core 2 |
17 +--------------------+--------+
18 | LOAD_HIT_PRE_HW_PF | 324373 |
19 +--------------------+--------+

注 :在线性访问的时候我们预加载的命中率是非常明显的。

 内存控制器和行缓冲区:

只有最后一级缓存(LLC)位于内存控制器内,内存控制器管理访问SDRAM BANKS。 内存由行和列组成。 访问的一个地址的时候,首先行地址被选中(RAS),然后该行的列地址被选中(CAS),最后获取这个字(word)。行通常就是一个页的大小,并加载到一个行缓冲区(row buffer)。 即使在这个阶段,通过硬件仍能减少延迟。 访问内存的请求维护在一个队列中,并进行重排,尽可能一次从相同行中取出多个字(words)

 非统一内存访问(NUMA):

现在系统在CPU插槽上有内存控制器。 插槽上的内存控制器大约有50ns的延迟,对现有的前端总线(FSB)和外部北桥(Northbridge)的内存控制器延迟已经减少了。多插槽的系统需要使用内存互连接口,intel使用QPI ,当一个CPU要访问另一个CPU插槽管理的内存时候讲使用到它。 这些互连的存在引起了非统一内存访问服务。 在2插槽系统中内存访问可能是在本地或1跳之遥(1hop away)。 在8插槽系统中内存访问可高达三跳,每一跳单向就会增加20ns的延迟。

 这些对算法意味着什么?

L1D缓存命中和完全失效从主内存中访问结果之间的差异是2个数量级,即<1ns和65-100ns。 如果我们的算法在不断增加的地址空间中随机访问,那么我们就不能从硬件支持的降低延迟中受益。 在设计算法和数据结构的我们能做什么呢?事实上有很多事情我们可以做的。 如果我们执行单元的数据块是相邻的,紧密的。并且我们以可预见的方式访问内存。我们的算法会快很多倍。 例如,相比使用桶(bucket)和chain 模式的哈希表(译者注:hash tables) ,比如在JDK中默认,我们可以使用使用linear-probing策略的open-addressing模式的哈希表。 在使用 linked-lists 和 trees时相比每个node只包含单个项,更应该每个node包含一个数组或者多个项; 研究算法以达到与缓存子系统的协调。我发现一个迷人的领域是Cache Oblivious Algorithms虽然名字有点误导,但有这里有一些很棒的概念,关于如何提高软件的性能和并行执行能力。 这篇文章,很好的说明了可以获得的性能好处。

 总结:

为了实现高性能,与缓存子系统达到一种协调是很重要的。 在这篇文章中我们看到,可以通过和内存访问模型协调的方式,而不是破坏的方式来实现,在设计算法和数据结构,考虑缓存失效是非常重要的,可能甚至比算法的执行指令数更重要。 这些不是我们在学生时代学习计算机科学的算法理论中能学到的。 在过去十年里,技术发生了一些根本性的变化。 对我来说,最重要的是多核心的崛起,和64位地址空间的大内存系统的发展。 有一件事是肯定的,如果我们想软件执行的更快,伸缩性更好,我们必须更好地利用CPU的多核,和注重内存访问模型。

更新:2012年8月06日

试图设计一个对所有处理器和内存的大小都随机访问算法是棘手的。 比如我下面的使用算法,在我的Sandy Bridge处理器速度较慢,但​​Nehalem的速度更快。 最关键的问题是当你以随机方式访问内存,性能将是非常难以预测的。 在所有的测试中,我也对包含L3缓存做了更加详尽的测试

1 private static final long LARGE_PRIME_INC = 70368760954879L;
2     RANDOM_HEAP_WALK
3     {
4         public int next(final int pageOffset, final int wordOffset, final intpos)
5         {
6             return (int)(pos + LARGE_PRIME_INC) & ARRAY_MASK;
7         }
8     };

 

01 Intel i7-2760QM @ 2.40GHz, 8GB RAM DDR3 1600MHz,
02 Linux 3.4.6 kernel 64-bit, Java 1.7.0_05
03 =================================================
04 0 29.06ns RANDOM_HEAP_WALK
05 1 29.47ns RANDOM_HEAP_WALK
06 2 29.48ns RANDOM_HEAP_WALK
07 3 29.43ns RANDOM_HEAP_WALK
08 4 29.42ns RANDOM_HEAP_WALK
09  
10  Performance counter stats for 'java -Xmx4g TestMemoryAccessPatterns 3':
11      9,444,928,682 dTLB-loads
12      4,371,982,327 dTLB-misses
13          #   46.29% of all dTLB cache hits
14  
15      9,390,675,639 L1-dcache-loads
16      1,471,647,016 L1-dcache-misses
17          #   15.67% of all L1-dcache hits
18  
19 +-----------------------+-------------+
20 |         Event         |   core 2    |
21 +-----------------------+-------------+
22 |   INSTR_RETIRED_ANY   | 7.71171e+09 |
23 | CPU_CLK_UNHALTED_CORE | 1.31717e+11 |
24 | L2_TRANS_ALL_REQUESTS | 8.4912e+09  |
25 |     L2_RQSTS_MISS     | 2.79635e+09 |
26 +-----------------------+-------------+
27 +-----------------+----------+
28 |     Metric      |  core 2  |
29 +-----------------+----------+
30 |   Runtime [s]   | 55.0094  |
31 |       CPI       | 17.0801  |
32 | L2 request rate | 1.10108  |
33 |  L2 miss rate   | 0.362611 |
34 |  L2 miss ratio  | 0.329324 |
35 +-----------------+----------+
36 +--------------------+-------------+
37 |       Event        |   core 2    |
38 +--------------------+-------------+
39 | LOAD_HIT_PRE_HW_PF | 3.59509e+06 |
40 +--------------------+-------------+
41 +------------------------+-------------+
42 |        Event           |   core 2    |
43 +------------------------+-------------+
44 | L3_LAT_CACHE_REFERENCE | 1.30318e+09 |
45 | L3_LAT_CACHE_MISS      | 2.62346e+07 |
46 +------------------------+-------------+

原文地址 
墙内地址

分享到:
评论

相关推荐

    java内存模型详解

    理解Java内存模型对于编写多线程并发程序至关重要,因为它直接影响到程序的正确性和性能。 在Java中,内存分为以下几个区域: 1. **程序计数器**:每个线程都有自己的程序计数器,用于存储当前线程执行的字节码...

    C++对象内存模型.pdf

    C++ 对象内存模型是 C++ 编程语言中一个重要的概念, 它描述了 C++ 对象在内存中的存储结构。这个模型是 C++ 编程语言的基础之一,对于理解 C++ 编程语言的工作机理具有重要的意义。 在 C++ 中,对象的内存模型是...

    镁光DDR FLASH IBIS模型.zip_ddr4 ibis模型,ddr4的ibis模型.zip

    在本压缩包中,包含了几款镁光(Micron)DDR4 FLASH的IBIS模型,如JFxE Ibis.zip、J2xE Ibis.zip等,这些模型文件用于精确描述DDR4内存芯片在不同工作条件下的信号完整性和电磁兼容性。IBIS(Input/Output Buffer ...

    DDR4 X4/X8颗粒 IBIS仿真模型

    总之,DDR4 X4/X8颗粒IBIS仿真模型是确保高性能DDR4内存系统信号完整性的重要手段,通过这样的模型,工程师可以预测和解决潜在的设计问题,从而实现高效、可靠的电子系统设计。对于处理大数据、高频率运算的应用,如...

    java内存模型.pdf

    - JSR133:JSR133是Java内存模型的重要修订,旨在修复早期JMM存在的问题,如内存可见性问题,提供更强的内存语义,并提高性能。它引入了对final和synchronized的新规则,以确保正确同步的代码行为明确且直观。 2. ...

    信息安全访问控制模型.pptx

    访问许可和访问模式是访问控制模型中的重要概念。访问许可描述主体对客体所具有的控制权,而访问模式描述主体对客体所具有的访问权。 访问许可的类型包括等级型(Hierarchical)和有主型(Owner),其中等级型是指...

    java内存模型文档

    这些文档如"Java内存模型.docx"、"Java内存模型2.docx"、"深入Java核心 Java内存分配原理精讲.docx"、"java内存模型.pdf"将深入探讨这些概念,帮助开发者更深入地理解Java内存模型及其在实际编程中的应用。...

    深入理解Java内存模型 pdf 超清版

    Java内存模型,简称JMM(Java Memory Model),是Java编程语言规范的一部分,它定义了程序中各个线程如何访问和修改共享变量,以及如何确保数据的一致性。深入理解Java内存模型对于编写高效的并发程序至关重要。本文...

    DDR4 ibis模型源文件

    3. **电源完整性分析**:DDR4内存的高速操作对电源网络的稳定性有很高要求,Ibis模型可以辅助分析电源噪声和地平面反弹,从而优化电源分配网络设计。 4. **热分析**:通过计算电流密度和功耗,可以评估内存模块的...

    3d .x文件 模型

    3d .x文件 模型 DirectX 装了DirectX 9.0或以上的才可以双击打开x文件 要把 max文件 转为 x文件 建议用Deep Exploration 来 File-&gt;Batch Operations-&gt;Convert 3D Files 要用Deep Exploration 打开max 文件 请看...

    three.js加载obj模型添加点击事件及其他

    OBJ是一种通用的3D模型格式,广泛用于交换3D数据。 首先,我们需要了解如何在three.js中加载OBJ模型。这通常涉及到以下步骤: 1. **导入three.js库**:确保在HTML文件中引入three.js库,可以通过CDN链接或者本地...

    深入理解java内存模型

    Java内存模型(Java Memory Model,JMM)是Java平台中非常关键的概念,它定义了线程如何共享和访问内存中的数据,以及在多线程环境下如何保证数据的一致性。这本书"深入理解Java内存模型"显然是为了帮助读者深入探讨...

    java并发之内存模型.docx

    Java并发编程中的内存模型是Java虚拟机(JVM)规范的一部分,它的设计目的是为了屏蔽不同硬件和操作系统内存访问的差异,确保Java程序在各种平台上都能有一致的内存访问行为。在并发环境中,线程间的通信和同步至关...

    深入理解Java内存模型(二)共3页.pdf.zip

    Java内存模型,简称JMM(Java Memory Model),是Java虚拟机规范中定义的一个抽象概念,它描述了在多线程环境下,如何在共享内存中读写变量,以及这些读写操作的可见性、原子性和有序性。这个模型规定了线程与主内存...

    信息安全访问控制模型.pdf

    2. 访问控制模型的类型:访问控制模型分为多种类型,主要包括自主访问控制模型(DAC)、强制访问控制模型(MAC)、基于角色的访问控制模型(RBAC)、以及包含保密性模型、完整性模型和混合策略模型等。不同类型的...

    java内存模型

    Java内存模型(Java Memory Model,JMM)是Java虚拟机(JVM)规范中的一个重要组成部分,它定义了程序中各个变量(包括实例域、静态域和数组元素)的访问规则,以及在实际计算机系统中如何将这些变量存储在内存和从...

    基于Java内存模型的并发程序模型检测.pdf

    Java内存模型是Java平台中定义的一种抽象概念,它描述了Java程序中各个线程如何共享和访问内存,以及在并发执行时如何保证数据一致性。JMM主要关注的是线程之间的通信(共享变量的读写)和同步。它的核心目标是在多...

    深入Java内存模型-JMM

    Java内存模型,简称JMM(Java Memory Model),是Java虚拟机规范中定义的一个抽象概念,它描述了在多线程环境下,如何保证各个线程对共享...阅读"深入Java内存模型.pdf"这样的资料,将有助于你更全面地掌握这一主题。

    基于Java多线程同步的安全性研究.pdf

    因此,文章强调了控制多个线程对某个资源的有序访问或修改的重要性,并讨论了Java内存模型中两个主要的问题:可见性和有序性。 最后,文章总结了基于Java多线程同步的安全性研究的重要性和必要性,并提出了解决Java...

Global site tag (gtag.js) - Google Analytics