PS:下面是性能测试的主要概念和计算公式,记录下:
一.系统吞度量要素:
一个系统的吞度量(承压能力)与request对CPU的消耗、外部接口、IO等等紧密关联。
单个reqeust 对CPU消耗越高,外部系统接口、IO影响速度越慢,系统吞吐能力越低,反之越高。
系统吞吐量几个重要参数:QPS(TPS)、并发数、响应时间
QPS(TPS):每秒钟request/事务 数量
并发数: 系统同时处理的request/事务数
响应时间: 一般取平均响应时间
(很多人经常会把并发数和TPS理解混淆)
理解了上面三个要素的意义之后,就能推算出它们之间的关系:
QPS(TPS)= 并发数/平均响应时间
一个系统吞吐量通常由QPS(TPS)、并发数两个因素决定,每套系统这两个值都有一个相对极限值,在应用场景访问压力下,只要某一项达到系统最高值,系统的吞吐量就上不去了,如果压力继续增大,系统的吞吐量反而会下降,原因是系统超负荷工作,上下文切换、内存等等其它消耗导致系统性能下降。
决定系统响应时间要素
我们做项目要排计划,可以多人同时并发做多项任务,也可以一个人或者多个人串行工作,始终会有一条关键路径,这条路径就是项目的工期。
系统一次调用的响应时间跟项目计划一样,也有一条关键路径,这个关键路径是就是系统影响时间;
关键路径是有CPU运算、IO、外部系统响应等等组成。
二.系统吞吐量评估:
我们在做系统设计的时候就需要考虑CPU运算、IO、外部系统响应因素造成的影响以及对系统性能的初步预估。
而通常境况下,我们面对需求,我们评估出来的出来QPS、并发数之外,还有另外一个维度:日PV。
通过观察系统的访问日志发现,在用户量很大的情况下,各个时间周期内的同一时间段的访问流量几乎一样。比如工作日的每天早上。只要能拿到日流量图和QPS我们就可以推算日流量。
通常的技术方法:
1. 找出系统的最高TPS和日PV,这两个要素有相对比较稳定的关系(除了放假、季节性因素影响之外)
2. 通过压力测试或者经验预估,得出最高TPS,然后跟进1的关系,计算出系统最高的日吞吐量。B2B中文和淘宝面对的客户群不一样,这两个客户群的网络行为不应用,他们之间的TPS和PV关系比例也不一样。
A)淘宝
淘宝流量图:
淘宝的TPS和PV之间的关系通常为 最高TPS:PV大约为 1 : 11*3600 (相当于按最高TPS访问11个小时,这个是商品详情的场景,不同的应用场景会有一些不同)
B) B2B中文站
B2B的TPS和PV之间的关系不同的系统不同的应用场景比例变化比较大,粗略估计在1 : 8个小时左右的关系(09年对offerdetail的流量分析数据)。旺铺和offerdetail这两个比例相差很大,可能是因为爬虫暂的比例较高的原因导致。
在淘宝环境下,假设我们压力测试出的TPS为100,那么这个系统的日吞吐量=100*11*3600=396万
这个是在简单(单一url)的情况下,有些页面,一个页面有多个request,系统的实际吞吐量还要小。
无论有无思考时间(T_think),测试所得的TPS值和并发虚拟用户数(U_concurrent)、Loadrunner读取的交易响应时间(T_response)之间有以下关系(稳定运行情况下):
TPS=U_concurrent / (T_response+T_think)。
并发数、QPS、平均响应时间三者之间关系
来源:http://www.cnblogs.com/jackei/
软件性能测试的基本概念和计算公式
一、软件性能的关注点
对一个软件做性能测试时需要关注那些性能呢?
我们想想在软件设计、部署、使用、维护中一共有哪些角色的参与,然后再考虑这些角色各自关注的性能点是什么,作为一个软件性能测试工程师,我们又该关注什么?
首先,开发软件的目的是为了让用户使用,我们先站在用户的角度分析一下,用户需要关注哪些性能。
对于用户来说,当点击一个按钮、链接或发出一条指令开始,到系统把结果已用户感知的形式展现出来为止,这个过程所消耗的时间是用户对这个软件性能的直观印象。也就是我们所说的响应时间,当相应时间较小时,用户体验是很好的,当然用户体验的响应时间包括个人主观因素和客观响应时间,在设计软件时,我们就需要考虑到如何更好地结合这两部分达到用户最佳的体验。如:用户在大数据量查询时,我们可以将先提取出来的数据展示给用户,在用户看的过程中继续进行数据检索,这时用户并不知道我们后台在做什么。
用户关注的是用户操作的相应时间。
其次,我们站在管理员的角度考虑需要关注的性能点。
1、 相应时间
2、 服务器资源使用情况是否合理
3、 应用服务器和数据库资源使用是否合理
4、 系统能否实现扩展
5、 系统最多支持多少用户访问、系统最大业务处理量是多少
6、 系统性能可能存在的瓶颈在哪里
7、 更换那些设备可以提高性能
8、 系统能否支持7×24小时的业务访问
再次,站在开发(设计)人员角度去考虑。
1、 架构设计是否合理
2、 数据库设计是否合理
3、 代码是否存在性能方面的问题
4、 系统中是否有不合理的内存使用方式
5、 系统中是否存在不合理的线程同步方式
6、 系统中是否存在不合理的资源竞争
那么站在性能测试工程师的角度,我们要关注什么呢?
一句话,我们要关注以上所有的性能点。
二、软件性能的几个主要术语
1、响应时间:对请求作出响应所需要的时间
网络传输时间:N1+N2+N3+N4
应用服务器处理时间:A1+A3
数据库服务器处理时间:A2
响应时间=N1+N2+N3+N4+A1+A3+A2
2、并发用户数的计算公式
系统用户数:系统额定的用户数量,如一个OA系统,可能使用该系统的用户总数是5000个,那么这个数量,就是系统用户数。
同时在线用户数:在一定的时间范围内,最大的同时在线用户数量。
同时在线用户数=每秒请求数RPS(吞吐量)+并发连接数+平均用户思考时间
平均并发用户数的计算:C=nL / T
其中C是平均的并发用户数,n是平均每天访问用户数(login session),L是一天内用户从登录到退出的平均时间(login session的平均时间),T是考察时间长度(一天内多长时间有用户使用系统)
并发用户数峰值计算:C^约等于C + 3*根号C
其中C^是并发用户峰值,C是平均并发用户数,该公式遵循泊松分布理论。
3、吞吐量的计算公式
指单位时间内系统处理用户的请求数
从业务角度看,吞吐量可以用:请求数/秒、页面数/秒、人数/天或处理业务数/小时等单位来衡量
从网络角度看,吞吐量可以用:字节/秒来衡量
对于交互式应用来说,吞吐量指标反映的是服务器承受的压力,他能够说明系统的负载能力
以不同方式表达的吞吐量可以说明不同层次的问题,例如,以字节数/秒方式可以表示数要受网络基础设施、服务器架构、应用服务器制约等方面的瓶颈;已请求数/秒的方式表示主要是受应用服务器和应用代码的制约体现出的瓶颈。
当没有遇到性能瓶颈的时候,吞吐量与虚拟用户数之间存在一定的联系,可以采用以下公式计算:F=VU * R /
其中F为吞吐量,VU表示虚拟用户个数,R表示每个虚拟用户发出的请求数,T表示性能测试所用的时间
4、性能计数器
是描述服务器或操作系统性能的一些数据指标,如使用内存数、进程时间,在性能测试中发挥着“监控和分析”的作用,尤其是在分析统统可扩展性、进行新能瓶颈定位时有着非常关键的作用。
资源利用率:指系统各种资源的使用情况,如cpu占用率为68%,内存占用率为55%,一般使用“资源实际使用/总的资源可用量”形成资源利用率。
5、思考时间的计算公式
Think Time,从业务角度来看,这个时间指用户进行操作时每个请求之间的时间间隔,而在做新能测试时,为了模拟这样的时间间隔,引入了思考时间这个概念,来更加真实的模拟用户的操作。
在吞吐量这个公式中F=VU * R / T说明吞吐量F是VU数量、每个用户发出的请求数R和时间T的函数,而其中的R又可以用时间T和用户思考时间TS来计算:R = T / TS
下面给出一个计算思考时间的一般步骤:
A、首先计算出系统的并发用户数
C=nL / T F=R×C
B、统计出系统平均的吞吐量
F=VU * R / T R×C = VU * R / T
C、统计出平均每个用户发出的请求数量
R=u*C*T/VU
D、根据公式计算出思考时间
TS=T/R
###############################################################################
QPS = req/sec = 请求数/秒
【QPS计算PV和机器的方式】
QPS统计方式 [一般使用 http_load 进行统计]
QPS = 总请求数 / ( 进程总数 * 请求时间 )
QPS: 单个进程每秒请求服务器的成功次数
单台服务器每天PV计算
公式1:每天总PV = QPS * 3600 * 6
公式2:每天总PV = QPS * 3600 * 8
服务器计算
服务器数量 = ceil( 每天总PV / 单台服务器每天总PV )
【峰值QPS和机器计算公式】
原理:每天80%的访问集中在20%的时间里,这20%时间叫做峰值时间
公式:( 总PV数 * 80% ) / ( 每天秒数 * 20% ) = 峰值时间每秒请求数(QPS)
机器:峰值时间每秒QPS / 单台机器的QPS = 需要的机器
问:每天300w PV 的在单台机器上,这台机器需要多少QPS?
答:( 3000000 * 0.8 ) / (86400 * 0.2 ) = 139 (QPS)
问:如果一台机器的QPS是58,需要几台机器来支持?
答:139 / 58 = 3
关于并发用户数和QPS,自己一直被这两个概念纠结,阅读了一下相关资料,总结如下:并发用户数和QPS两个概念没有直接关系,但是如果要说QPS时,一定需要指明是多少并发用户数下的QPS,否则豪无意义,因为单用户数的40QPS和20并发用户数下的40QPS是两个不同的概念。前者说明该应用可以在一秒内串行执行40个请求,而后者说明在并发20个请求的情况下,一秒内该应用能处理40个请求,当QPS相同时,越大的并发用户数,代表了网站并发处理能力越好。对于当前的web服务器,其处理单个用户的请求肯定戳戳有余,这个时候会存在资源浪费的情况(一方面该服务器可能有多个cpu,但是只处理单个进程,另一方面,在处理一个进程中,有些阶段可能是IO阶段,这个时候会造成CPU等待,但是有没有其他请求进程可以被处理)。而当并发数设置的过大时,每秒钟都会有很多请求需要处理,会造成进程(线程)频繁切换,反正真正用于处理请求的时间变少,每秒能够处理的请求数反而变少,同时用户的请求等待时间也会变大,甚至超过用户的心理底线。所以在最小并发数和最大并发数之间,一定有一个最合适的并发数值,在并发数下,QPS能够达到最大。但是,这个并发并非是一个最佳的并发,因为当QPS到达最大时的并发,可能已经造成用户的等待时间变得超过了其最优值,所以对于一个系统,其最佳的并发数,一定需要结合QPS,用户的等待时间来综合确定。
图1 并发用户数,QPS,用户平均等待时间(响应时间关系图)
上面这张图是应用其他人的关于并发用户数,QPS,用户平均等待时间的一张关系图,对于实际的系统,也应该是对于不同的并发数,进行多次测试,获取到这些数值后,画出这样一张图出来,以便于分析出系统的最佳并发用户数。
相关推荐
本文将深入探讨系统吞吐量(TPS)、用户并发量以及性能测试中的相关概念和计算公式。 系统吞吐量(TPS,Transactions Per Second)是指系统每秒能处理的事务数量,是衡量系统性能的关键指标。它受到CPU消耗、外部...
性能测试是评估软件系统在特定负载条件下运行效率的过程,主要关注系统吞吐量、用户并发量和响应时间等核心指标。系统吞吐量(TPS,Transactions Per Second)指的是每秒钟处理的请求或事务数量,它是衡量系统处理...
通过对上述知识点的深入探讨,我们可以清楚地了解到性能测试中的几个核心概念,包括系统吞吐量、并发数、响应时间以及它们之间的相互关系。此外,还介绍了决定系统响应时间的因素、系统吞吐量的评估方法以及软件性能...
系统吞吐量(TPS,Transactions Per Second)和用户并发量是衡量系统性能的重要指标,它们在性能测试中占据核心地位。系统吞吐量是指单位时间内系统能够处理的请求或事务的数量,它直接反映了系统的处理能力。TPS的...
本文将深入探讨几个关键概念和技术,包括TPS、QPS、吞吐量、性能测试流程和策略,以及性能瓶颈分析与调优。 1. TPS(Transactions Per Second)和QPS(Queries Per Second) TPS是衡量系统每秒处理事务的数量,而...
性能测试是评估软件系统在高负载或大并发情况下的运行状况的重要手段,它涉及多个关键指标,如并发用户数、吞吐量、响应时间和错误率等。本文将深入解析性能测试结果的分析方法。 首先,计算并发用户数是性能测试的...
### 性能测试学习笔记 #### 一、性能测试基础知识概览 性能测试是一种软件测试类型,用于评估软件系统...通过对以上内容的学习和理解,我们可以更加系统地进行性能测试工作,从而有效提升软件系统的质量和用户体验。
文中提到了性能测试方法归纳和性能测试方法选取策略,强调了在不同场景下选择合适的方法能够有效提高测试的效率和准确性。 测试工具方面,文中重点介绍了Loadrunner和Jmeter两种性能测试工具的使用。Loadrunner是一...
它的主要任务在于评估系统的响应速度和吞吐量,从而快速发现系统存在的瓶颈,对系统的配置和参数进行优化,确保提高系统的可靠性和稳定性。以用户角度出发,响应速度和处理能力直接影响到用户满意度,而从机构角度...
- **并发量与吞吐量(TPS)的关系**:阐述了并发用户数量与系统吞吐量之间的关系。 - **线上性能数据采集**:描述了如何在生产环境中收集性能数据的方法。 - **性能测试需求分析**: - **业务调研**:了解业务...
性能测试旨在评估和优化系统在不同负载下的响应时间、吞吐量、资源利用率等方面的表现,确保系统能够满足用户的需求和服务级别协议(SLA)的要求。通过性能测试,可以发现并解决潜在的性能瓶颈问题,提高用户体验和...
**2.2 吞吐量(QPS/TPS)** - **定义**:单位时间内系统能处理的请求或事务数量。 - **业务场景应用**:如用户登录、注册、购买等操作。 - **度量单位**:通常使用请求数/秒或页面数/秒来表示。 **2.3 并发用户数...
通过公式"并发量=吞吐量/(总请求响应时间+真实用户总思考时间)"可以计算理论上的并发量。实际工作中,还需要考虑峰值并发量,即在特定时间段内可能出现的最大并发请求。 3. **数据量**:数据量的大小关系到服务器的...
### 性能测试指标计算详解 ...通过对数据量、高峰业务PV量以及吞吐量等指标的精确计算,可以有效地评估系统的性能表现,并据此调整系统架构或优化代码逻辑,确保在真实业务环境中系统能够稳定运行。
- **性能测试**:旨在评估系统在正常工作条件下的表现,包括响应时间、吞吐量和资源利用率等指标。其目的是确保系统能够在预期的工作负载下稳定运行。 - **负载测试**:通过模拟用户活动来测试系统在不同负载级别下...
### 软件性能测试评估模型与测试策略详解 #### 一、软件性能测试评估模型 **1. 吞吐率指标(TPS)** ...通过合理的评估模型和测试策略,可以有效地预测和改善系统的性能,确保用户获得良好的体验。