`

EHCache

 
阅读更多
EHCache的使用

在开发高并发量,高性能的网站应用系统时,缓存Cache起到了非常重要的作用。本文主要介绍EHCache的使用,以及使用EHCache的实践经验。
笔者使用过多种基于Java的开源Cache组件,其中包括OSCache、JBossCache、EHCache。OSCache功能强大,使用灵活,可用于对象缓存、Filter缓存以及在JSP中直接使用cache标签。笔者在最近的使用过程中发现,在并发量较高时,OSCache会出现线程阻塞和数据错误,通过分析源代码发现是其内部实现的缺陷。JBossCache最大的优点是支持基于对象属性的集群同步,不过JBossCache的配置使用都较复杂,在并发量较高的情况下,对象属性数据在集群中同步也会加大系统的开销。以上两种Cache本文仅作简单介绍,不做深入探讨。
EHCache是来自sourceforge(http://ehcache.sourceforge.net/)的开源项目,也是纯Java实现的简单、快速的Cache组件。EHCache支持内存和磁盘的缓存,支持LRU、LFU和FIFO多种淘汰算法,支持分布式的Cache,可以作为Hibernate的缓存插件。同时它也能提供基于Filter的Cache,该Filter可以缓存响应的内容并采用Gzip压缩提高响应速度。
 EHCache API的基本用法
首先介绍CacheManager类。它主要负责读取配置文件,默认读取CLASSPATH下的ehcache.xml,根据配置文件创建并管理Cache对象。
// 使用默认配置文件创建CacheManager
CacheManager manager = CacheManager.create();
// 通过manager可以生成指定名称的Cache对象
Cache cache = cache = manager.getCache("demoCache");
// 使用manager移除指定名称的Cache对象
manager.removeCache("demoCache");
可以通过调用manager.removalAll()来移除所有的Cache。通过调用manager的shutdown()方法可以关闭CacheManager。
有了Cache对象之后就可以进行一些基本的Cache操作,例如:
//往cache中添加元素
Element element = new Element("key", "value");
cache.put(element);
//从cache中取回元素
Element element = cache.get("key");
element.getValue();
//从Cache中移除一个元素
cache.remove("key");
可以直接使用上面的API进行数据对象的缓存,这里需要注意的是对于缓存的对象都是必须可序列化的。在下面的篇幅中笔者还会介绍EHCache和Spring、Hibernate的整合使用。
 配置文件
配置文件ehcache.xml中命名为demoCache的缓存配置:
<cache name="demoCache"
maxElementsInMemory="10000"
eternal="false"
overflowToDisk="true"
timeToIdleSeconds="300"
timeToLiveSeconds="600"
memoryStoreEvictionPolicy="LFU" />

各配置参数的含义:
maxElementsInMemory:缓存中允许创建的最大对象数
eternal:缓存中对象是否为永久的,如果是,超时设置将被忽略,对象从不过期。
timeToIdleSeconds:缓存数据的钝化时间,也就是在一个元素消亡之前,两次访问时间的最大时间间隔值,这只能在元素不是永久驻留时有效,如果该值是 0 就意味着元素可以停顿无穷长的时间。
timeToLiveSeconds:缓存数据的生存时间,也就是一个元素从构建到消亡的最大时间间隔值,这只能在元素不是永久驻留时有效,如果该值是0就意味着元素可以停顿无穷长的时间。
overflowToDisk:内存不足时,是否启用磁盘缓存。
memoryStoreEvictionPolicy:缓存满了之后的淘汰算法。LRU和FIFO算法这里就不做介绍。LFU算法直接淘汰使用比较少的对象,在内存保留的都是一些经常访问的对象。对于大部分网站项目,该算法比较适用。
如果应用需要配置多个不同命名并采用不同参数的Cache,可以相应修改配置文件,增加需要的Cache配置即可。
 利用Spring APO整合EHCache
首先,在CLASSPATH下面放置ehcache.xml配置文件。在Spring的配置文件中先添加如下cacheManager配置:
<bean id="cacheManager"
class="org.springframework.cache.ehcache.EhCacheManagerFactoryBean">
</bean>
配置demoCache:
<bean id="demoCache" class="org.springframework.cache.ehcache.EhCacheFactoryBean">
<property name="cacheManager" ref="cacheManager" />
<property name="cacheName">
<value>demoCache</value>
</property>
</bean>
接下来,写一个实现org.aopalliance.intercept.MethodInterceptor接口的拦截器类。有了拦截器就可以有选择性的配置想要缓存的 bean 方法。如果被调用的方法配置为可缓存,拦截器将为该方法生成 cache key 并检查该方法返回的结果是否已缓存。如果已缓存,就返回缓存的结果,否则再次执行被拦截的方法,并缓存结果供下次调用。具体代码如下:
public class MethodCacheInterceptor implements MethodInterceptor,
InitializingBean {
private Cache cache;

public void setCache(Cache cache) {
this.cache = cache;
}

public void afterPropertiesSet() throws Exception {
Assert.notNull(cache,
"A cache is required. Use setCache(Cache) to provide one.");
}

public Object invoke(MethodInvocation invocation) throws Throwable {
String targetName = invocation.getThis().getClass().getName();
String methodName = invocation.getMethod().getName();
Object[] arguments = invocation.getArguments();
Object result;
String cacheKey = getCacheKey(targetName, methodName, arguments);
Element element = null;
synchronized (this){
element = cache.get(cacheKey);
if (element == null) {
//调用实际的方法
result = invocation.proceed();
element = new Element(cacheKey, (Serializable) result);
cache.put(element);
}
}
return element.getValue();
}

private String getCacheKey(String targetName, String methodName,
Object[] arguments) {
StringBuffer sb = new StringBuffer();
sb.append(targetName).append(".").append(methodName);
if ((arguments != null) && (arguments.length != 0)) {
for (int i = 0; i < arguments.length; i++) {
sb.append(".").append(arguments[i]);
}
}
return sb.toString();
}
}
synchronized (this)这段代码实现了同步功能。为什么一定要同步?Cache对象本身的get和put操作是同步的。如果我们缓存的数据来自数据库查询,在没有这段同步代码时,当key不存在或者key对应的对象已经过期时,在多线程并发访问的情况下,许多线程都会重新执行该方法,由于对数据库进行重新查询代价是比较昂贵的,而在瞬间大量的并发查询,会对数据库服务器造成非常大的压力。所以这里的同步代码是很重要的。
接下来,继续完成拦截器和Bean的配置:
<bean id="methodCacheInterceptor" class="com.xiebing.utils.interceptor.MethodCacheInterceptor">
<property name="cache">
<ref local="demoCache" />
</property>
</bean>
<bean id="methodCachePointCut" class="org.springframework.aop.support.RegexpMethodPointcutAdvisor">
<property name="advice">
<ref local="methodCacheInterceptor" />
</property>
<property name="patterns">
<list>
<value>.*myMethod</value>
</list>
</property>
</bean>

<bean id="myServiceBean"
class="com.xiebing.ehcache.spring.MyServiceBean">
</bean>
<bean id="myService" class="org.springframework.aop.framework.ProxyFactoryBean">
<property name="target">
<ref local="myServiceBean" />
</property>
<property name="interceptorNames">
<list>
<value>methodCachePointCut</value>
</list>
</property>
</bean>
其中myServiceBean是实现了业务逻辑的Bean,里面的方法myMethod()的返回结果需要被缓存。这样每次对myServiceBean的myMethod()方法进行调用,都会首先从缓存中查找,其次才会查询数据库。使用AOP的方式极大地提高了系统的灵活性,通过修改配置文件就可以实现对方法结果的缓存,所有的对Cache的操作都封装在了拦截器的实现中。
 CachingFilter功能
使用Spring的AOP进行整合,可以灵活的对方法的的返回结果对象进行缓存。CachingFilter功能可以对HTTP响应的内容进行缓存。这种方式缓存数据的粒度比较粗,例如缓存整张页面。它的优点是使用简单、效率高,缺点是不够灵活,可重用程度不高。
EHCache使用SimplePageCachingFilter类实现Filter缓存。该类继承自CachingFilter,有默认产生cache key的calculateKey()方法,该方法使用HTTP请求的URI和查询条件来组成key。也可以自己实现一个Filter,同样继承CachingFilter类,然后覆写calculateKey()方法,生成自定义的key。
在笔者参与的项目中很多页面都使用AJAX,为保证JS请求的数据不被浏览器缓存,每次请求都会带有一个随机数参数i。如果使用SimplePageCachingFilter,那么每次生成的key都不一样,缓存就没有意义了。这种情况下,我们就会覆写calculateKey()方法。
要使用SimplePageCachingFilter,首先在配置文件ehcache.xml中,增加下面的配置:
<cache name="SimplePageCachingFilter" maxElementsInMemory="10000" eternal="false"
overflowToDisk="false" timeToIdleSeconds="300" timeToLiveSeconds="600"
memoryStoreEvictionPolicy="LFU" />
其中name属性必须为SimplePageCachingFilter,修改web.xml文件,增加一个Filter的配置:
<filter>
<filter-name>SimplePageCachingFilter</filter-name>
<filter-class>net.sf.ehcache.constructs.web.filter.SimplePageCachingFilter</filter-class>
</filter>
<filter-mapping>
<filter-name>SimplePageCachingFilter</filter-name>
<url-pattern>/test.jsp</url-pattern>
</filter-mapping>
下面我们写一个简单的test.jsp文件进行测试,缓存后的页面每次刷新,在600秒内显示的时间都不会发生变化的。代码如下:
<%
out.println(new Date());
%>
CachingFilter输出的数据会根据浏览器发送的Accept-Encoding头信息进行Gzip压缩。经过笔者测试,Gzip压缩后的数据量是原来的1/4,速度是原来的4-5倍,所以缓存加上压缩,效果非常明显。
在使用Gzip压缩时,需注意两个问题:
1. Filter在进行Gzip压缩时,采用系统默认编码,对于使用GBK编码的中文网页来说,需要将操作系统的语言设置为:zh_CN.GBK,否则会出现乱码的问题。
2. 默认情况下CachingFilter会根据浏览器发送的请求头部所包含的Accept-Encoding参数值来判断是否进行Gzip压缩。虽然IE6/7浏览器是支持Gzip压缩的,但是在发送请求的时候却不带该参数。为了对IE6/7也能进行Gzip压缩,可以通过继承CachingFilter,实现自己的Filter,然后在具体的实现中覆写方法acceptsGzipEncoding。
具体实现参考:
protected boolean acceptsGzipEncoding(HttpServletRequest request) {
final boolean ie6 = headerContains(request, "User-Agent", "MSIE 6.0");
final boolean ie7 = headerContains(request, "User-Agent", "MSIE 7.0");
return acceptsEncoding(request, "gzip") || ie6 || ie7;
}
 EHCache在Hibernate中的使用
EHCache可以作为Hibernate的在开发高并发量,高性能的网站应用系统时,缓存Cache起到了非常重要的作用。本文主要介绍EHCache的使用,以及使用EHCache的实践经验。
笔者使用过多种基于Java的开源Cache组件,其中包括OSCache、JBossCache、EHCache。OSCache功能强大,使用灵活,可用于对象缓存、Filter缓存以及在JSP中直接使用cache标签。笔者在最近的使用过程中发现,在并发量较高时,OSCache会出现线程阻塞和数据错误,通过分析源代码发现是其内部实现的缺陷。JBossCache最大的优点是支持基于对象属性的集群同步,不过JBossCache的配置使用都较复杂,在并发量较高的情况下,对象属性数据在集群中同步也会加大系统的开销。以上两种Cache本文仅作简单介绍,不做深入探讨。
EHCache是来自sourceforge(http://ehcache.sourceforge.net/)的开源项目,也是纯Java实现的简单、快速的Cache组件。EHCache支持内存和磁盘的缓存,支持LRU、LFU和FIFO多种淘汰算法,支持分布式的Cache,可以作为Hibernate的缓存插件。同时它也能提供基于Filter的Cache,该Filter可以缓存响应的内容并采用Gzip压缩提高响应速度。
 EHCache API的基本用法
首先介绍CacheManager类。它主要负责读取配置文件,默认读取CLASSPATH下的ehcache.xml,根据配置文件创建并管理Cache对象。
// 使用默认配置文件创建CacheManager
CacheManager manager = CacheManager.create();
// 通过manager可以生成指定名称的Cache对象
Cache cache = cache = manager.getCache("demoCache");
// 使用manager移除指定名称的Cache对象
manager.removeCache("demoCache");
可以通过调用manager.removalAll()来移除所有的Cache。通过调用manager的shutdown()方法可以关闭CacheManager。
有了Cache对象之后就可以进行一些基本的Cache操作,例如:
//往cache中添加元素
Element element = new Element("key", "value");
cache.put(element);
//从cache中取回元素
Element element = cache.get("key");
element.getValue();
//从Cache中移除一个元素
cache.remove("key");
可以直接使用上面的API进行数据对象的缓存,这里需要注意的是对于缓存的对象都是必须可序列化的。在下面的篇幅中笔者还会介绍EHCache和Spring、Hibernate的整合使用。
 配置文件
配置文件ehcache.xml中命名为demoCache的缓存配置:
<cache name="demoCache"
maxElementsInMemory="10000"
eternal="false"
overflowToDisk="true"
timeToIdleSeconds="300"
timeToLiveSeconds="600"
memoryStoreEvictionPolicy="LFU" />

各配置参数的含义:
maxElementsInMemory:缓存中允许创建的最大对象数
eternal:缓存中对象是否为永久的,如果是,超时设置将被忽略,对象从不过期。
timeToIdleSeconds:缓存数据的钝化时间,也就是在一个元素消亡之前,两次访问时间的最大时间间隔值,这只能在元素不是永久驻留时有效,如果该值是 0 就意味着元素可以停顿无穷长的时间。
timeToLiveSeconds:缓存数据的生存时间,也就是一个元素从构建到消亡的最大时间间隔值,这只能在元素不是永久驻留时有效,如果该值是0就意味着元素可以停顿无穷长的时间。
overflowToDisk:内存不足时,是否启用磁盘缓存。
memoryStoreEvictionPolicy:缓存满了之后的淘汰算法。LRU和FIFO算法这里就不做介绍。LFU算法直接淘汰使用比较少的对象,在内存保留的都是一些经常访问的对象。对于大部分网站项目,该算法比较适用。
如果应用需要配置多个不同命名并采用不同参数的Cache,可以相应修改配置文件,增加需要的Cache配置即可。
 利用Spring APO整合EHCache
首先,在CLASSPATH下面放置ehcache.xml配置文件。在Spring的配置文件中先添加如下cacheManager配置:
<bean id="cacheManager"
class="org.springframework.cache.ehcache.EhCacheManagerFactoryBean">
</bean>
配置demoCache:
<bean id="demoCache" class="org.springframework.cache.ehcache.EhCacheFactoryBean">
<property name="cacheManager" ref="cacheManager" />
<property name="cacheName">
<value>demoCache</value>
</property>
</bean>
接下来,写一个实现org.aopalliance.intercept.MethodInterceptor接口的拦截器类。有了拦截器就可以有选择性的配置想要缓存的 bean 方法。如果被调用的方法配置为可缓存,拦截器将为该方法生成 cache key 并检查该方法返回的结果是否已缓存。如果已缓存,就返回缓存的结果,否则再次执行被拦截的方法,并缓存结果供下次调用。具体代码如下:
public class MethodCacheInterceptor implements MethodInterceptor,
InitializingBean {
private Cache cache;

public void setCache(Cache cache) {
this.cache = cache;
}

public void afterPropertiesSet() throws Exception {
Assert.notNull(cache,
"A cache is required. Use setCache(Cache) to provide one.");
}

public Object invoke(MethodInvocation invocation) throws Throwable {
String targetName = invocation.getThis().getClass().getName();
String methodName = invocation.getMethod().getName();
Object[] arguments = invocation.getArguments();
Object result;
String cacheKey = getCacheKey(targetName, methodName, arguments);
Element element = null;
synchronized (this){
element = cache.get(cacheKey);
if (element == null) {
//调用实际的方法
result = invocation.proceed();
element = new Element(cacheKey, (Serializable) result);
cache.put(element);
}
}
return element.getValue();
}

private String getCacheKey(String targetName, String methodName,
Object[] arguments) {
StringBuffer sb = new StringBuffer();
sb.append(targetName).append(".").append(methodName);
if ((arguments != null) && (arguments.length != 0)) {
for (int i = 0; i < arguments.length; i++) {
sb.append(".").append(arguments[i]);
}
}
return sb.toString();
}
}
synchronized (this)这段代码实现了同步功能。为什么一定要同步?Cache对象本身的get和put操作是同步的。如果我们缓存的数据来自数据库查询,在没有这段同步代码时,当key不存在或者key对应的对象已经过期时,在多线程并发访问的情况下,许多线程都会重新执行该方法,由于对数据库进行重新查询代价是比较昂贵的,而在瞬间大量的并发查询,会对数据库服务器造成非常大的压力。所以这里的同步代码是很重要的。
接下来,继续完成拦截器和Bean的配置:
<bean id="methodCacheInterceptor" class="com.xiebing.utils.interceptor.MethodCacheInterceptor">
<property name="cache">
<ref local="demoCache" />
</property>
</bean>
<bean id="methodCachePointCut" class="org.springframework.aop.support.RegexpMethodPointcutAdvisor">
<property name="advice">
<ref local="methodCacheInterceptor" />
</property>
<property name="patterns">
<list>
<value>.*myMethod</value>
</list>
</property>
</bean>

<bean id="myServiceBean"
class="com.xiebing.ehcache.spring.MyServiceBean">
</bean>
<bean id="myService" class="org.springframework.aop.framework.ProxyFactoryBean">
<property name="target">
<ref local="myServiceBean" />
</property>
<property name="interceptorNames">
<list>
<value>methodCachePointCut</value>
</list>
</property>
</bean>
其中myServiceBean是实现了业务逻辑的Bean,里面的方法myMethod()的返回结果需要被缓存。这样每次对myServiceBean的myMethod()方法进行调用,都会首先从缓存中查找,其次才会查询数据库。使用AOP的方式极大地提高了系统的灵活性,通过修改配置文件就可以实现对方法结果的缓存,所有的对Cache的操作都封装在了拦截器的实现中。
 CachingFilter功能
使用Spring的AOP进行整合,可以灵活的对方法的的返回结果对象进行缓存。CachingFilter功能可以对HTTP响应的内容进行缓存。这种方式缓存数据的粒度比较粗,例如缓存整张页面。它的优点是使用简单、效率高,缺点是不够灵活,可重用程度不高。
EHCache使用SimplePageCachingFilter类实现Filter缓存。该类继承自CachingFilter,有默认产生cache key的calculateKey()方法,该方法使用HTTP请求的URI和查询条件来组成key。也可以自己实现一个Filter,同样继承CachingFilter类,然后覆写calculateKey()方法,生成自定义的key。
在笔者参与的项目中很多页面都使用AJAX,为保证JS请求的数据不被浏览器缓存,每次请求都会带有一个随机数参数i。如果使用SimplePageCachingFilter,那么每次生成的key都不一样,缓存就没有意义了。这种情况下,我们就会覆写calculateKey()方法。
要使用SimplePageCachingFilter,首先在配置文件ehcache.xml中,增加下面的配置:
<cache name="SimplePageCachingFilter" maxElementsInMemory="10000" eternal="false"
overflowToDisk="false" timeToIdleSeconds="300" timeToLiveSeconds="600"
memoryStoreEvictionPolicy="LFU" />
其中name属性必须为SimplePageCachingFilter,修改web.xml文件,增加一个Filter的配置:
<filter>
<filter-name>SimplePageCachingFilter</filter-name>
<filter-class>net.sf.ehcache.constructs.web.filter.SimplePageCachingFilter</filter-class>
</filter>
<filter-mapping>
<filter-name>SimplePageCachingFilter</filter-name>
<url-pattern>/test.jsp</url-pattern>
</filter-mapping>
下面我们写一个简单的test.jsp文件进行测试,缓存后的页面每次刷新,在600秒内显示的时间都不会发生变化的。代码如下:
<%
out.println(new Date());
%>
CachingFilter输出的数据会根据浏览器发送的Accept-Encoding头信息进行Gzip压缩。经过笔者测试,Gzip压缩后的数据量是原来的1/4,速度是原来的4-5倍,所以缓存加上压缩,效果非常明显。
在使用Gzip压缩时,需注意两个问题:
1. Filter在进行Gzip压缩时,采用系统默认编码,对于使用GBK编码的中文网页来说,需要将操作系统的语言设置为:zh_CN.GBK,否则会出现乱码的问题。
2. 默认情况下CachingFilter会根据浏览器发送的请求头部所包含的Accept-Encoding参数值来判断是否进行Gzip压缩。虽然IE6/7浏览器是支持Gzip压缩的,但是在发送请求的时候却不带该参数。为了对IE6/7也能进行Gzip压缩,可以通过继承CachingFilter,实现自己的Filter,然后在具体的实现中覆写方法acceptsGzipEncoding。
具体实现参考:
protected boolean acceptsGzipEncoding(HttpServletRequest request) {
final boolean ie6 = headerContains(request, "User-Agent", "MSIE 6.0");
final boolean ie7 = headerContains(request, "User-Agent", "MSIE 7.0");
return acceptsEncoding(request, "gzip") || ie6 || ie7;
}
 EHCache在Hibernate中的使用
EHCache可以作为Hibernate的二级缓存使用。在hibernate.cfg.xml中需增加如下设置:
<prop key="hibernate.cache.provider_class">
org.hibernate.cache.EhCacheProvider
</prop>
然后在Hibernate映射文件的每个需要Cache的Domain中,加入类似如下格式信息:
<cache usage="read-write|nonstrict-read-write|read-only" />
比如:
<cache usage="read-write" />
最后在配置文件ehcache.xml中增加一段cache的配置,其中name为该domain的类名。
<cache name="domain.class.name"
maxElementsInMemory="10000"
eternal="false"
timeToIdleSeconds="300"
timeToLiveSeconds="600"
overflowToDisk="false"
/>
 EHCache的监控
对于Cache的使用,除了功能,在实际的系统运营过程中,我们会比较关注每个Cache对象占用的内存大小和Cache的命中率。有了这些数据,我们就可以对Cache的配置参数和系统的配置参数进行优化,使系统的性能达到最优。EHCache提供了方便的API供我们调用以获取监控数据,其中主要的方法有:
//得到缓存中的对象数
cache.getSize();
//得到缓存对象占用内存的大小
cache.getMemoryStoreSize();
//得到缓存读取的命中次数
cache.getStatistics().getCacheHits()
//得到缓存读取的错失次数
cache.getStatistics().getCacheMisses()
 分布式缓存
EHCache从1.2版本开始支持分布式缓存。分布式缓存主要解决集群环境中不同的服务器间的数据的同步问题。具体的配置如下:
在配置文件ehcache.xml中加入
<cacheManagerPeerProviderFactory
class="net.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory"
properties="peerDiscovery=automatic, multicastGroupAddress=230.0.0.1, multicastGroupPort=4446"/>
<cacheManagerPeerListenerFactory
class="net.sf.ehcache.distribution.RMICacheManagerPeerListenerFactory"/>
另外,需要在每个cache属性中加入
<cacheEventListenerFactory class="net.sf.ehcache.distribution.RMICacheReplicatorFactory"/>
例如:
<cache name="demoCache"
maxElementsInMemory="10000"
eternal="true"
overflowToDisk="true">
<cacheEventListenerFactory class="net.sf.ehcache.distribution.RMICacheReplicatorFactory"/>
</cache>
总结
EHCache是一个非常优秀的基于Java的Cache实现。它简单、易用,而且功能齐全,并且非常容易与Spring、Hibernate等流行的开源框架进行整合。通过使用EHCache可以减少网站项目中数据库服务器的访问压力,提高网站的访问速度,改善用户的体验。二级缓存使用。在hibernate.cfg.xml中需增加如下设置:
<prop key="hibernate.cache.provider_class">
org.hibernate.cache.EhCacheProvider
</prop>
然后在Hibernate映射文件的每个需要Cache的Domain中,加入类似如下格式信息:
<cache usage="read-write|nonstrict-read-write|read-only" />
比如:
<cache usage="read-write" />
最后在配置文件ehcache.xml中增加一段cache的配置,其中name为该domain的类名。
<cache name="domain.class.name"
maxElementsInMemory="10000"
eternal="false"
timeToIdleSeconds="300"
timeToLiveSeconds="600"
overflowToDisk="false"
/>
 EHCache的监控
对于Cache的使用,除了功能,在实际的系统运营过程中,我们会比较关注每个Cache对象占用的内存大小和Cache的命中率。有了这些数据,我们就可以对Cache的配置参数和系统的配置参数进行优化,使系统的性能达到最优。EHCache提供了方便的API供我们调用以获取监控数据,其中主要的方法有:
//得到缓存中的对象数
cache.getSize();
//得到缓存对象占用内存的大小
cache.getMemoryStoreSize();
//得到缓存读取的命中次数
cache.getStatistics().getCacheHits()
//得到缓存读取的错失次数
cache.getStatistics().getCacheMisses()
 分布式缓存
EHCache从1.2版本开始支持分布式缓存。分布式缓存主要解决集群环境中不同的服务器间的数据的同步问题。具体的配置如下:
在配置文件ehcache.xml中加入
<cacheManagerPeerProviderFactory
class="net.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory"
properties="peerDiscovery=automatic, multicastGroupAddress=230.0.0.1, multicastGroupPort=4446"/>
<cacheManagerPeerListenerFactory
class="net.sf.ehcache.distribution.RMICacheManagerPeerListenerFactory"/>
另外,需要在每个cache属性中加入
<cacheEventListenerFactory class="net.sf.ehcache.distribution.RMICacheReplicatorFactory"/>
例如:
<cache name="demoCache"
maxElementsInMemory="10000"
eternal="true"
overflowToDisk="true">
<cacheEventListenerFactory class="net.sf.ehcache.distribution.RMICacheReplicatorFactory"/>
</cache>
总结
EHCache是一个非常优秀的基于Java的Cache实现。它简单、易用,而且功能齐全,并且非常容易与Spring、Hibernate等流行的开源框架进行整合。通过使用EHCache可以减少网站项目中数据库服务器的访问压力,提高网站的访问速度,改善用户的体验。
分享到:
评论

相关推荐

    ehcache-3.3.1-API文档-中文版.zip

    赠送jar包:ehcache-3.3.1.jar; 赠送原API文档:ehcache-3.3.1-javadoc.jar; 赠送源代码:ehcache-3.3.1-sources.jar; 赠送Maven依赖信息文件:ehcache-3.3.1.pom; 包含翻译后的API文档:ehcache-3.3.1-javadoc-...

    Ehcache分布式缓存与其在SpringBoot应用

    Ehcache是一个高性能的、基于Java的进程内缓存解决方案,它被广泛应用于各种Java应用程序,包括Java EE和轻量级容器。Ehcache的主要优势在于它的快速响应、易用性和丰富的缓存策略。它提供了两种级别的缓存存储:...

    ehcache.jar及源码

    Ehcache是一个广泛使用的开源Java缓存库,它为应用程序提供了高效的内存管理和数据缓存功能。Ehcache的核心目标是提高应用性能,通过将频繁访问的数据存储在内存中,减少对数据库的依赖,从而降低系统负载。这次我们...

    ehcache-3.9.9-API文档-中英对照版.zip

    赠送jar包:ehcache-3.9.9.jar; 赠送原API文档:ehcache-3.9.9-javadoc.jar; 赠送源代码:ehcache-3.9.9-sources.jar; 赠送Maven依赖信息文件:ehcache-3.9.9.pom; 包含翻译后的API文档:ehcache-3.9.9-javadoc-...

    ehcache监控工具ehcache-monitor-kit-1.0.3

    1.解压缩到目录下,复制ehcache-monitor-kit-1.0.0\lib\ehcache-probe-1.0.0.jar包到application的web-inf/lib目录下 2.将以下配置copy的ehcache.xml文件的ehcache标签中,注:上述链接中说的配置少写了个probe包名...

    ehcache.xsd_ehcache.xml代码提示.rar

    【标题解析】:“ehcache.xsd_ehcache.xml代码提示.rar”这个标题表明这是一个与Ehcache缓存系统相关的资源包,主要目的是为Ehcache的配置文件ehcache.xml提供代码提示功能。Ehcache是一个广泛使用的开源Java缓存...

    EHcache相关jar下载及案例

    EHcache是一款广泛使用的开源Java分布式缓存系统,主要设计用于提高应用程序的性能和可伸缩性。在Java应用程序中,特别是那些基于Hibernate或MyBatis的持久层框架中,EHcache作为二级缓存工具,能够显著提升数据访问...

    ehcache-core-2.6.11-API文档-中英对照版.zip

    赠送jar包:ehcache-core-2.6.11.jar; 赠送原API文档:ehcache-core-2.6.11-javadoc.jar; 赠送源代码:ehcache-core-2.6.11-sources.jar; 赠送Maven依赖信息文件:ehcache-core-2.6.11.pom; 包含翻译后的API文档...

    Ehcache 简单的监控

    Ehcache是一个开源的、高性能的缓存解决方案,广泛应用于Java应用程序中,以提高数据访问的速度和效率。本文将深入探讨Ehcache的简单监控,帮助开发者更好地理解其工作原理和性能状态。 首先,了解Ehcache的核心...

    SpringBoot 集成Ehcache实现缓存

    ### Spring Boot集成Ehcache实现缓存 #### 一、Ehcache简介 Ehcache是一个高效的纯Java进程内缓存框架,以其快速且轻便的特点而被广泛应用于各种应用场景中,尤其在Java EE和轻量级容器环境中更是受到青睐。...

    ehcache的配置参数详解

    ehcache是一种广泛使用的Java缓存框架,用于提高应用程序性能,特别是在数据访问操作中。通过将数据存储在内存中,ehcache能够显著减少数据库查询次数,从而加快应用响应速度。本文将深入探讨ehcache.xml配置文件中...

    spring + ehcache + redis两级缓存

    当我们谈论“Spring + Ehcache + Redis”两级缓存时,我们实际上是在讨论如何在Java环境中利用Spring框架来集成Ehcache作为本地缓存,并利用Redis作为分布式二级缓存,构建一个高效且可扩展的缓存解决方案。...

    ehcache缓存的jar包和配置文件

    Ehcache是一个流行的Java缓存库,用于在应用程序中存储数据,以提高性能并减少对数据库的访问。它被广泛应用于各种系统,特别是在处理大量数据和需要快速响应时间的应用中。下面将详细介绍Ehcache的核心概念、配置...

    Ehcache通过Jgroups做集群

    Ehcache是一款高效、流行的Java缓存库,它允许应用程序快速访问经常使用的数据,从而提高性能和响应速度。在分布式环境中,为了实现数据共享和高可用性,Ehcache提供了集群功能。而Jgroups则是Java中一个强大的集群...

    cache/ehcache缓存使用

    本文将详细讲解"cache/ehcache缓存使用"的相关知识点,包括缓存的基本概念、Ehcache的介绍、以及如何在Java应用中使用Ehcache进行缓存操作。 首先,我们要理解什么是缓存。缓存是一种存储技术,它临时存储常用或...

    借助Ehcache缓存框架实现对页面的缓存Demo

    本工程用于研究如何借助Ehcache缓存框架实现对页面的缓存 本工程编码方式:UTF-8 本工程开发工具:MyEclipse 说明: 1、ehcache.xml和ehcache.xsd两个文件可以在下在下载下来的名为“ehcache-core-x.x.x-...

    Ehcache 3(ehcache-clustered-3.8.1-kit.zip)

    Ehcache 3 是一个广泛使用的开源Java缓存解决方案,特别是在需要高性能、低延迟的数据存储和检索场景下。Ehcache 3 提供了丰富的功能,包括本地内存缓存、磁盘持久化、多线程支持以及在分布式环境中实现集群共享缓存...

    ehcache

    **Ehcache 知识详解** Ehcache 是一个开源的、高性能的缓存解决方案,广泛应用于Java应用程序中,尤其在提升系统性能和减少数据库负载方面表现突出。它支持内存和磁盘存储,并且可以与Java持久层框架如Hibernate、...

    mybatis ehcache 1.0 ehcache.xsd 提示文件

    本篇文章将详细探讨MyBatis与Ehcache的集成以及`ehcache.xsd`和`ehcache.xml`这两个配置文件在其中的作用。 首先,Ehcache是一个开源的、高性能的Java缓存库,它能够极大地减少对数据库的访问,提高应用程序的响应...

    ehcache2.6.5.rar

    Ehcache是一个开源的Java缓存库,广泛用于提高应用程序的性能和响应速度,通过存储经常访问的数据在内存中,避免了频繁的数据库查询。它最初由Tomi Triebel开发,现在是Terracotta公司的产品。在版本2.6.5中,...

Global site tag (gtag.js) - Google Analytics