MapReduce工作原理图文详解
前言:
前段时间我们云计算团队一起学习了hadoop相关的知识,大家都积 极地做了、学了很多东西,收获颇丰。可是开学后,大家都忙各自的事情,云计算方面的动静都不太大。呵呵~不过最近在胡老大的号召下,我们云计算团队重振旗 鼓了,希望大伙仍高举“云在手,跟我走”的口号战斗下去。这篇博文就算是我们团队“重启云计算”的见证吧,也希望有更多优秀的文章出炉。汤帅,亮仔,谢总 •••搞起来啊!
呵呵,下面我们进入正题,这篇文章主要分析以下两点内容:
目录:
1.MapReduce作业运行流程
2.Map、Reduce任务中Shuffle和排序的过程
正文:
1.MapReduce作业运行流程
下面贴出我用visio2010画出的流程示意图:
流程分析:
1.在客户端启动一个作业。
2.向JobTracker请求一个Job ID。
3.将运行作业所需要的资源文件复制到HDFS上,包括MapReduce程序打包的JAR文件、配置文件和客户端计算所得的输入划分信息。这些文件都存 放在JobTracker专门为该作业创建的文件夹中。文件夹名为该作业的Job ID。JAR文件默认会有10个副本(mapred.submit.replication属性控制);输入划分信息告诉了JobTracker应该为这 个作业启动多少个map任务等信息。
4.JobTracker接收到作业后,将其放在一个作业队列里,等待作业调度器对其进行调度(这里是不是很像微机中的进程调度呢,呵呵),当作业调度器 根据自己的调度算法调度到该作业时,会根据输入划分信息为每个划分创建一个map任务,并将map任务分配给TaskTracker执行。对于map和 reduce任务,TaskTracker根据主机核的数量和内存的大小有固定数量的map槽和reduce槽。这里需要强调的是:map任务不是随随便 便地分配给某个TaskTracker的,这里有个概念叫:数据本地化(Data-Local)。意思是:将map任务分配给含有该map处理的数据块的 TaskTracker上,同时将程序JAR包复制到该TaskTracker上来运行,这叫“运算移动,数据不移动”。而分配reduce任务时并不考 虑数据本地化。
5.TaskTracker每隔一段时间会给JobTracker发送一个心跳,告诉JobTracker它依然在运行,同时心跳中还携带着很多的信息, 比如当前map任务完成的进度等信息。当JobTracker收到作业的最后一个任务完成信息时,便把该作业设置成“成功”。当JobClient查询状 态时,它将得知任务已完成,便显示一条消息给用户。
以上是在客户端、JobTracker、TaskTracker的层次来分析MapReduce的工作原理的,下面我们再细致一点,从map任务和reduce任务的层次来分析分析吧。
2.Map、Reduce任务中Shuffle和排序的过程
同样贴出我在visio中画出的流程示意图:
流程分析:
Map端:
1.每个输入分片会让一个map任务来处理,默认情况下,以HDFS的一个块的大小(默认为64M)为一个分片,当然我们也可以设置块的大小。map输出 的结果会暂且放在一个环形内存缓冲区中(该缓冲区的大小默认为100M,由io.sort.mb属性控制),当该缓冲区快要溢出时(默认为缓冲区大小的 80%,由io.sort.spill.percent属性控制),会在本地文件系统中创建一个溢出文件,将该缓冲区中的数据写入这个文件。
2.在写入磁盘之前,线程首先根据reduce任务的数目将数据划分为相同数目的分区,也就是一个reduce任务对应一个分区的数据。这样做是为了避免 有些reduce任务分配到大量数据,而有些reduce任务却分到很少数据,甚至没有分到数据的尴尬局面。其实分区就是对数据进行hash的过程。然后 对每个分区中的数据进行排序,如果此时设置了Combiner,将排序后的结果进行Combia操作,这样做的目的是让尽可能少的数据写入到磁盘。
3.当map任务输出最后一个记录时,可能会有很多的溢出文件,这时需要将这些文件合并。合并的过程中会不断地进行排序和combia操作,目的有两 个:1.尽量减少每次写入磁盘的数据量;2.尽量减少下一复制阶段网络传输的数据量。最后合并成了一个已分区且已排序的文件。为了减少网络传输的数据量, 这里可以将数据压缩,只要将mapred.compress.map.out设置为true就可以了。
4.将分区中的数据拷贝给相对应的reduce任务。有人可能会问:分区中的数据怎么知道它对应的reduce是哪个呢?其实map任务一直和其父 TaskTracker保持联系,而TaskTracker又一直和JobTracker保持心跳。所以JobTracker中保存了整个集群中的宏观信 息。只要reduce任务向JobTracker获取对应的map输出位置就ok了哦。
到这里,map端就分析完了。那到底什么是Shuffle呢?Shuffle的中文意思是“洗牌”,如果我们这样看:一个map产生的数据,结果通过hash过程分区却分配给了不同的reduce任务,是不是一个对数据洗牌的过程呢?呵呵。
Reduce端:
1.Reduce会接收到不同map任务传来的数据,并且每个map传来的数据都是有序的。如果reduce端接受的数据量相当小,则直接存储在内存中 (缓冲区大小由mapred.job.shuffle.input.buffer.percent属性控制,表示用作此用途的堆空间的百分比),如果数据 量超过了该缓冲区大小的一定比例(由mapred.job.shuffle.merge.percent决定),则对数据合并后溢写到磁盘中。
2.随着溢写文件的增多,后台线程会将它们合并成一个更大的有序的文件,这样做是为了给后面的合并节省时间。其实不管在map端还是reduce端,MapReduce都是反复地执行排序,合并操作,现在终于明白了有些人为什么会说:排序是hadoop的灵魂。
3.合并的过程中会产生许多的中间文件(写入磁盘了),但MapReduce会让写入磁盘的数据尽可能地少,并且最后一次合并的结果并没有写入磁盘,而是直接输入到reduce函数。
到这里,MapReduce工作原理终于分析完了,不过我还会继续深入研究,请关注我的后续hadoop相关的博客。
- 大小: 46.1 KB
- 大小: 46.1 KB
分享到:
相关推荐
在大数据处理领域,Hadoop MapReduce是一种广泛应用的分布式计算框架,它使得在大规模数据集上进行并行计算成为可能。本篇文章将详细讲解如何利用Hadoop MapReduce实现TF-IDF(Term Frequency-Inverse Document ...
【标题】Hadoop MapReduce 实现 WordCount MapReduce 是 Apache Hadoop 的核心组件之一,它为大数据处理提供了一个分布式计算框架。WordCount 是 MapReduce 框架中经典的入门示例,它统计文本文件中每个单词出现的...
【大数据Hadoop MapReduce词频统计】 大数据处理是现代信息技术领域的一个重要概念,它涉及到海量数据的存储、管理和分析。Hadoop是Apache软件基金会开发的一个开源框架,专门用于处理和存储大规模数据集。Hadoop的...
《Hadoop MapReduce实战手册》是一本专注于大数据处理技术的专著,主要针对Apache Hadoop中的MapReduce框架进行了深入的探讨。MapReduce是Hadoop生态系统中的核心组件之一,用于处理和生成大规模数据集。该书旨在...
《Hadoop MapReduce Cookbook 源码》是一本专注于实战的书籍,旨在帮助读者通过具体的例子深入理解并掌握Hadoop MapReduce技术。MapReduce是大数据处理领域中的核心组件,尤其在处理大规模分布式数据集时,它的重要...
### Hadoop MapReduce V2 知识点概览 #### 一、Hadoop MapReduce V2 生态系统介绍 **Hadoop MapReduce V2** 是Hadoop生态系统中的一个关键组件,用于处理大规模数据集。相较于V1版本,V2版本在架构上进行了重大...
在大数据处理领域,Apriori算法与Hadoop MapReduce的结合是实现大规模数据挖掘的关键技术之一。Apriori算法是一种经典的关联规则学习算法,用于发现数据集中频繁出现的项集,进而挖掘出有趣的关联规则。而Hadoop ...
在大数据处理领域,Python、Hadoop MapReduce是两个非常重要的工具。本文将深入探讨如何使用Python来编写Hadoop MapReduce程序,以实现微博关注者之间的相似用户分析。这个任务的关键在于理解并应用分布式计算原理,...
本章介绍了 Hadoop MapReduce,同时发现它有以下缺点: 1、程序设计模式不容易使用,而且 Hadoop 的 Map Reduce API 太过低级,很难提高开发者的效率。 2、有运行效率问题,MapReduce 需要将中间产生的数据保存到...
Hadoop MapReduce v2 Cookbook (第二版), Packt Publishing
基于Hadoop Mapreduce 实现酒店评价文本情感分析(python源码+项目说明).zip基于Hadoop Mapreduce 实现酒店评价文本情感分析(python源码+项目说明).zip基于Hadoop Mapreduce 实现酒店评价文本情感分析(python...
基于Hadoop Mapreduce 实现酒店评价文本情感分析(python开发源码+项目说明).zip基于Hadoop Mapreduce 实现酒店评价文本情感分析(python开发源码+项目说明).zip基于Hadoop Mapreduce 实现酒店评价文本情感分析...
Hadoop MapReduce 教程概述 Hadoop MapReduce 是 Hadoop 生态系统中的一部分,它是一种可靠的、可扩展的并行处理框架,用于处理大规模数据集。MapReduce 是一种编程模型,它将计算任务分解为两个阶段:Map 阶段和 ...
Hadoop MapReduce 编程实战 Hadoop MapReduce 是大数据处理的核心组件之一,它提供了一个编程模型和软件框架,用于大规模数据处理。下面是 Hadoop MapReduce 编程实战的知识点总结: MapReduce 编程基础 ...
在大数据处理领域,Hadoop MapReduce 是一种广泛使用的分布式计算框架,它允许高效地处理海量数据。KMeans 是一种常见的无监督机器学习算法,用于聚类分析,将数据集中的对象按照相似性分组成不同的簇。现在我们来...
在大数据处理领域,Hadoop MapReduce 是一个至关重要的框架,它允许开发者编写分布式应用程序来处理海量数据。"Hadoop MapReduce HelloWorld 能调试" 的主题意味着我们将深入理解如何设置、运行以及调试 MapReduce ...
AQI空气质量分析-基于Hadoop MapReduce实现源代码+分析实验报告(高分完整项目),含有代码注释,新手也可看懂,个人手打98分项目,导师非常认可的高分项目,毕业设计、期末大作业和课程设计高分必看,下载下来,...
从给定的文件信息来看,文档标题为"Hadoop MapReduce教程.pdf",描述与标题相同,标签为"Hadoop Map Reduce",部分内容虽然无法完全解析,但可以推断出与Hadoop MapReduce的基本概念、操作流程以及相关的编程模型...