`

Hadoop Map中如何处理跨行Block和InputSplit

 
阅读更多

前面一节中我们说过Mapper最小输入数据单元是InputSplit。比如对于那么对于一个记录行形式的文本大于128M时,HDFS将会分成多块存储(block),同时分片并非到每行行尾。这样就会产生两个问题

1. Hadoop的一个Block默认是128M,那么对于一个记录行形式的文本,会不会造成一行记录被分到两个Block当中?

2. 在把文件从Block中读取出来进行切分时,会不会造成一行记录被分成两个InputSplit,如果被分成两个InputSplit,这样一个InputSplit里面就有一行不完整的数据,那么处理这个InputSplit的Mapper会不会得出不正确的结果?

对于上面的两个问题,首先再次明确两个概念:Block和InputSplit:

 

1. Block是HDFS存储文件的单位(默认是128M);

 

2. InputSplit是MapReduce对文件进行处理和运算的输入单位,只是一个逻辑概念,每个InputSplit并没有对文件实际的切割,只是记录了要处理的数据的位置(包括文件的path和hosts)和长度(由start和length决定)。

 

因此以行记录形式的文本,可能存在一行记录被划分到不同的Block,甚至不同的DataNode上去。通过分析FileInputFormat里面的getSplits方法,可以得出,某一行记录同样也可能被划分到不同的InputSplit。

我们在再从org.apache.hadoop.mapreduce.lib.input.FileInputFormat源码分析

  /** 
   * Generate the list of files and make them into FileSplits.
   * @param job the job context
   * @throws IOException
   */
  public List<InputSplit> getSplits(JobContext job) throws IOException {
    long minSize = Math.max(getFormatMinSplitSize(), getMinSplitSize(job));
    long maxSize = getMaxSplitSize(job);

    // generate splits
    List<InputSplit> splits = new ArrayList<InputSplit>();
    List<FileStatus> files = listStatus(job);
    for (FileStatus file: files) {
      Path path = file.getPath();
      long length = file.getLen();
      if (length != 0) {
        BlockLocation[] blkLocations;
        if (file instanceof LocatedFileStatus) {
          blkLocations = ((LocatedFileStatus) file).getBlockLocations();
        } else {
          FileSystem fs = path.getFileSystem(job.getConfiguration());
          blkLocations = fs.getFileBlockLocations(file, 0, length);
        }
        if (isSplitable(job, path)) {
          long blockSize = file.getBlockSize();
          long splitSize = computeSplitSize(blockSize, minSize, maxSize);

          long bytesRemaining = length;
          while (((double) bytesRemaining)/splitSize > SPLIT_SLOP) {
            int blkIndex = getBlockIndex(blkLocations, length-bytesRemaining);
            splits.add(makeSplit(path, length-bytesRemaining, splitSize,
                                     blkLocations[blkIndex].getHosts()));
            bytesRemaining -= splitSize;
          }

          if (bytesRemaining != 0) {
            int blkIndex = getBlockIndex(blkLocations, length-bytesRemaining);
            splits.add(makeSplit(path, length-bytesRemaining, bytesRemaining,
                       blkLocations[blkIndex].getHosts()));
          }
        } else { // not splitable
          splits.add(makeSplit(path, 0, length, blkLocations[0].getHosts()));
        }
      } else { 
        //Create empty hosts array for zero length files
        splits.add(makeSplit(path, 0, length, new String[0]));
      }
    }
    // Save the number of input files for metrics/loadgen
    job.getConfiguration().setLong(NUM_INPUT_FILES, files.size());
    LOG.debug("Total # of splits: " + splits.size());
    return splits;
  }

   从上面的代码可以看出,对文件进行切分其实很简单:获取文件在HDFS上的路径和Block信息,然后根据splitSize对文件进行切分,splitSize = computeSplitSize(blockSize, minSize, maxSize);maxSize,minSize,blockSize都可以配置,默认splitSize 就等于blockSize的默认值(128m)。

   FileInputFormat对文件的切分是严格按照偏移量来的,因此一行记录比较长的话,可能被切分到不同的InputSplit。 但这并不会对Map造成影响,尽管一行记录可能被拆分到不同的InputSplit,但是与FileInputFormat关联的RecordReader被设计的足够健壮,当一行记录跨InputSplit时,其能够到读取不同的InputSplit,直到把这一行记录读取完成 。我们拿最常见的TextInputFormat源码分析如何处理跨行InputSplit的,TextInputFormat关联的是LineRecordReader,下面我们先看LineRecordReader的的nextKeyValue方法里读取文件的代码:

  public boolean nextKeyValue() throws IOException {
    if (key == null) {
      key = new LongWritable();
    }
    key.set(pos);
    if (value == null) {
      value = new Text();
    }
    int newSize = 0;
    // We always read one extra line, which lies outside the upper
    // split limit i.e. (end - 1)
    while (getFilePosition() <= end) {
      newSize = in.readLine(value, maxLineLength,
          Math.max(maxBytesToConsume(pos), maxLineLength));
      pos += newSize;
      if (newSize < maxLineLength) {
        break;
      }

      // line too long. try again
      LOG.info("Skipped line of size " + newSize + " at pos " + 
               (pos - newSize));
    }
    if (newSize == 0) {
      key = null;
      value = null;
      return false;
    } else {
      return true;
    }
  }

1、其读取文件是通过LineReader(in就是一个LineReader实例)的readLine方法完成的。关键的逻辑就在这个readLine方法里,这个方法主要的逻辑归纳起来是3点:

  • 总是从buffer里读取数据,如果buffer里的数据读完了,先加载下一批数据到buffer
  • 在buffer中查找"行尾",将开始位置至行尾处的数据拷贝给str(也就是最后的Value).如果为遇到"行尾",继续加载新的数据到buffer进行查找
  • 关键点在于:给到buffer的数据是直接从文件中读取的,完全不会考虑是否超过了split的界限,而是一直读取到当前行结束为止
	  /**
	   * Read a line terminated by one of CR, LF, or CRLF.
	   */
	  private int readDefaultLine(Text str, int maxLineLength, int maxBytesToConsume)
	  throws IOException {
	    /* We're reading data from in, but the head of the stream may be
	     * already buffered in buffer, so we have several cases:
	     * 1. No newline characters are in the buffer, so we need to copy
	     *    everything and read another buffer from the stream.
	     * 2. An unambiguously terminated line is in buffer, so we just
	     *    copy to str.
	     * 3. Ambiguously terminated line is in buffer, i.e. buffer ends
	     *    in CR.  In this case we copy everything up to CR to str, but
	     *    we also need to see what follows CR: if it's LF, then we
	     *    need consume LF as well, so next call to readLine will read
	     *    from after that.
	     * We use a flag prevCharCR to signal if previous character was CR
	     * and, if it happens to be at the end of the buffer, delay
	     * consuming it until we have a chance to look at the char that
	     * follows.
	     */
	    str.clear();
	    int txtLength = 0; //tracks str.getLength(), as an optimization
	    int newlineLength = 0; //length of terminating newline
	    boolean prevCharCR = false; //true of prev char was CR
	    long bytesConsumed = 0;
	    do {
	      int startPosn = bufferPosn; //starting from where we left off the last time
	      //如果buffer中的数据读完了,先加载一批数据到buffer里 
	      if (bufferPosn >= bufferLength) {
	        startPosn = bufferPosn = 0;
	        if (prevCharCR) {
	          ++bytesConsumed; //account for CR from previous read
	        }
	        bufferLength = in.read(buffer);
	        if (bufferLength <= 0) {
	          break; // EOF
	        }
	      }
	      //注意:由于不同操作系统对“行结束符“的定义不同:  
	      //UNIX: '\n'  (LF)  
	      //Mac:  '\r'  (CR)  
	      //Windows: '\r\n'  (CR)(LF)  
	      //为了准确判断一行的结尾,程序的判定逻辑是:  
	      //1.如果当前符号是LF,可以确定一定是到了行尾,但是需要参考一下前一个  
	      //字符,因为如果前一个字符是CR,那就是windows文件,“行结束符的长度”  
	      //(即变量:newlineLength)应该是2,否则就是UNIX文件,“行结束符的长度”为1。  
	      //2.如果当前符号不是LF,看一下前一个符号是不是CR,如果是也可以确定一定上个字符就是行尾了,这是一个mac文件。  
	      //3.如果当前符号是CR的话,还需要根据下一个字符是不是LF判断“行结束符的长度”,所以只是标记一下prevCharCR=true,供读取下个字符时参考
	      for (; bufferPosn < bufferLength; ++bufferPosn) { //search for newline
	        if (buffer[bufferPosn] == LF) {//存在'\n'换行字符   
	          newlineLength = (prevCharCR) ? 2 : 1;
	          ++bufferPosn; // at next invocation proceed from following byte
	          break;
	        }
	        if (prevCharCR) { //CR + notLF, we are at notLF
	          newlineLength = 1;
	          break;
	        }
	        prevCharCR = (buffer[bufferPosn] == CR);//存在'\r'回车字符
	      }
	      int readLength = bufferPosn - startPosn;
	      if (prevCharCR && newlineLength == 0) {
	        --readLength; //CR at the end of the buffer
	      }
	      bytesConsumed += readLength;
	      int appendLength = readLength - newlineLength;
	      if (appendLength > maxLineLength - txtLength) {
	        appendLength = maxLineLength - txtLength;
	      }
	      if (appendLength > 0) {
	        str.append(buffer, startPosn, appendLength);
	        txtLength += appendLength;
	      }
		  //newlineLength == 0 就意味着始终没有读到行尾,程序会继续通过文件输入流继续从文件里读取数据。
		  //这里有一个非常重要的地方:in的实例创建自构造函数:org.apache.hadoop.mapreduce.LineRecordReader.lib.input.LineRecordReader.initialize(InputSplit, TaskAttemptContext)  
	      //方法内:FSDataInputStream fileIn = fs.open(split.getPath()); 我们以看到:  
	      //对于LineRecordReader:当它对取“一行”时,一定是读取到完整的行,不会受filesplit的任何影响,因为它读取是filesplit所在的文件,而不是限定在filesplit的界限范围内。  
	      //所以不会出现“断行”的问题! 
	    } while (newlineLength == 0 && bytesConsumed < maxBytesToConsume);

	    if (bytesConsumed > (long)Integer.MAX_VALUE) {
	      throw new IOException("Too many bytes before newline: " + bytesConsumed);
	    }
	    return (int)bytesConsumed;
	  }
2、按照readLine的上述行为,在遇到跨split的行时,会将下一个split开始行数据读取出来构成一行完整的数据,那么下一个split怎么判定开头的一行有没有被上一个split的LineRecordReader读取过从而避免漏读或重复读取开头一行呢?这方面LineRecordReader使用了一个简单而巧妙的方法:既然无法断定每一个split开始的一行是独立的一行还是被切断的一行的一部分,那就跳过每个split的开始一行(当然要除第一个split之外),从第二行开始读取,然后在到达split的结尾端时总是再多读一行,这样数据既能接续起来又避开了断行带来的麻烦.以下是相关的源码:
// If this is not the first split, we always throw away first record
// because we always (except the last split) read one extra line in
// next() method.
if (start != 0) {//非第一个InputSplit忽略掉第一行
start += in.readLine(new Text(), 0, maxBytesToConsume(start));
}
this.pos = start;
3、相应地,在LineRecordReader判断是否还有下一行的方法:org.apache.hadoop.mapreduce.lib.input.LineRecordReader.nextKeyValue()中,while使用的判定条件保证了InputSplit读取跨界的问题:当前位置小于或等于split的结尾位置,也就说:当前已处于split的结尾位置上时,while依然会执行一次,这一次读到显然已经是下一个split的开始行了
  public boolean nextKeyValue() throws IOException {
	    if (key == null) {
	      key = new LongWritable();
	    }
	    key.set(pos);
	    if (value == null) {
	      value = new Text();
	    }
	    int newSize = 0;
	    // We always read one extra line, which lies outside the upper
	    // split limit i.e. (end - 1)
	    while (getFilePosition() <= end) {//保证InputSplit读取边界的问题
	      newSize = in.readLine(value, maxLineLength,
	          Math.max(maxBytesToConsume(pos), maxLineLength));
	      pos += newSize;
	      if (newSize < maxLineLength) {
	        break;
	      }

	      // line too long. try again
	      LOG.info("Skipped line of size " + newSize + " at pos " + 
	               (pos - newSize));
	    }
	    if (newSize == 0) {
	      key = null;
	      value = null;
	      return false;
	    } else {
	      return true;
	    }
	  }
 至此,通过上面的源码分析我们清楚了解到TextInputFormat是如何解决跨行Block和InputSplit的,因此当我们需要实现自己的InputFormat时,也会面临在切分数据时的连续性解析问题。
分享到:
评论

相关推荐

    Hadoop面试100题.pdf

    - **知识点说明**:虽然RAID可以提供一定程度的数据冗余和保护,但在Hadoop集群中,通常不推荐在每个节点上配置RAID,因为这样做可能会增加成本并且不必要。HDFS自身的冗余机制已经足够应对单点故障。 16. **因为...

    大数据面试一:hadoop

    Hadoop的TextInputFormat是默认的输入格式,它将文件按行拆分为InputSplit,并由LineRecordReader将每一行转换为键值对,键是行的偏移量,值是行的内容。开发者可以通过自定义InputFormat类,重写createRecordReader...

    大数据技术Hadoop面试题,看看你能答对多少?(3).pdf

    - InputSplit并不等同于Block,InputSplit是输入数据的逻辑划分,可以跨多个Block。 12. **WebUI与端口**:NameNode的WebUI默认监听在50070端口,而不是50030,50030通常是Secondary NameNode的WebUI端口。 13. *...

    大数据技术Hadoop面试题,看看你能答对多少?(3).docx

    在大数据领域,Hadoop是一个关键的技术,它是一个开源的分布式计算框架,专为处理和存储大规模数据而设计。以下是一些关于Hadoop的面试题及其解析,帮助理解Hadoop的核心组件和工作原理。 1. NameNode管理metadata...

    Hadoop 100道基础面试题

    MapReduce编程模型可以分为Map和Reduce两个阶段,输入数据被切分为等长的块(称为inputsplit),每个块由一个Map任务处理。 另外,了解Hadoop安装及环境配置相关的命令也是必需的。例如,hadoop fsck命令用于检查...

    MapReduce源码流程.pdf

    - read阶段:RecordReader从InputSplit中读取数据,解析成key/value对。 - map阶段:将解析的key/value传递给`map()`方法,生成新的key/value对。 - collect阶段:使用OutputCollector将map()方法产生的结果写入内存...

    2018最新程序员面试题

    - **版本控制工具**:MapReduce的inputsplit和block不是同一个概念,inputsplit定义了Map任务处理的数据范围。 - **Web界面**:NameNode的Web UI端口是50070,而不是50030。 - **文件系统格式化**:当DataNode报告不...

    HadoopMapReduce-分区、排序、切片等.zip

    切片是指将大文件拆分成多个小块(Block),每个块作为一个单独的输入分片(InputSplit)供 Map 任务处理。Hadoop 文件系统(HDFS)将大文件分成块,而RecordReader负责将输入分片进一步分解为键值对。切片的数量和...

    大数据课程体系.pdf

    Java集合框架,如List、Set、Map等,是数据存储和处理的关键,而JVM原理与配置、调优则是优化程序性能的重要环节。 **Linux操作系统**:Linux是大数据平台的常用操作系统,课程介绍了Linux的基本概念、安装方法,...

    《大数据平台搭建与配置管理》期中试题试卷及答案.docx

    - **详细解析**:MapReduce中Map和Reduce阶段可以有多个Mapper和Reducer,但Reducer的数量通常取决于数据分区的数量。 45. **HBase的存储特点** - **知识点**:HBase是否存储空列。 - **详细解析**:HBase确实...

    大数据面试资料

    ### 大数据技术知识点解析 #### 一、Kafka Message结构 ...以上内容涵盖了从Kafka Message的基本结构到Hadoop核心概念和高级特性的详细介绍,以及一个具体的案例分析,旨在帮助读者全面理解大数据领域的关键技术点。

    大数据课程体系

    - **InputSplit和OutputSplit**:理解MapReduce作业中的输入切片和输出切片的概念。 - **BlockSize配置**:讨论HDFS块大小配置的重要性。 - **最少副本数配置**:探讨HDFS中副本数量的配置及其对系统性能的影响。 - ...

    大数据课程体系.docx

    - **InputSplit和OutputSplit**:解释MapReduce任务中的输入分割和输出分割机制。 - **Block Size配置**:探讨HDFS块大小的配置选项及其对性能的影响。 - **最少副本数配置**:说明如何通过配置副本数量来确保数据的...

Global site tag (gtag.js) - Google Analytics