- String sql= "select name,age,sex from student";
- SQLQuery query = session.createSQLQuery(sql);
- query.setResultTransformer(Transformers.ALIAS_TO_ENTITY_MAP);
- List list =query.list();
- for(int i=0;i<list.size();i++){
- Map m = (Map)list.get(i);
- System.out.println(" name :"+m.get("NAME"));//此处注意大写问题,oracle数据库查询出来的表列名为大写,此处必须与查询出的列名完全一样
- System.out.println(" age:"+m.get("AGE"));
- System.out.println(" sex :"+m.get("SEX"));
- }
以上一段代码 可以取代传统的 用Object数组去强转list的方法,也省去了用序列的取值方法,省时省力。这样即便查询几十个字段,程序员也可以按照字段名来取出相应的值,和老方法做一下对比:
- String sql= "select name,age,sex from student";
- SQLQuery query = session.createSQLQuery(sql);
- List list =query.list();
- for(int i=0;i<list.size();i++){
- Object[] m = (Object[])list.get(i);
- System.out.println(" name :"+m[0]);
- System.out.println(" age:"+m[1]);
- System.out.println(" sex :"+m.[2]);
- //如果此处有100个字段, 累死你丫的 ,查串了一个就哭去吧 ╮(╯▽╰)╭
- }
转自:http://blog.csdn.net/zsy5606666/article/details/9065677
相关推荐
在Python编程环境中,我们经常遇到导入模块时遇到错误,如"No module named ‘transformers.models.auto.tokenization-auto‘"。这个错误表明系统无法找到名为`transformers.models.auto.tokenization-auto`的模块,...
标题中的“bianxingjingang.rar_OLDMETAL.J_TRANSFORMERS_opengl_opengl_deform”暗示了这是一个关于OpenGL编程的项目,具体是实现了一个变形金刚模型在3D空间中的动态旋转和形变效果。这个项目可能使用了OldMetal.J...
Transformers.ALIAS_TO_ENTITY_MAP 是 Hibernate 中的一个转换器,用于将查询结果转换为 Map 对象。ALIAX_TO_ENTITY_MAP Transformer 将查询结果转换为 Map 对象,KEY 是数据库中的字段名,VALUE 是该字段的值。 ...
《Hibernate 3.0 Criteria API详解》 在Java持久化框架Hibernate中,Criteria API是一种强大的查询工具,它允许开发者以面向对象的方式构建SQL查询,从而避免了直接编写SQL语句的繁琐工作。Criteria API在Hibernate...
transformers.BertTokenizer numpy panel datasets.Dataset datasets.DatasetDict datasets.Features datasets.Value datasets.ClassLabel plotly.express torch.nn.functional transformers.AutoTokenizer ...
标题"SCT.zip_TRANSFORMERS_sct_zip"涉及到的主题是超导变压器(Super Conducting Transformers, SCT),这是一种使用超导材料作为绕组的电力变压器。超导材料具有极低的电阻,几乎为零,这使得在传输电流时几乎没有...
transformers.AutoModelForSequenceClassification torch scipy nltk re wordcloud.WordCloud sklearn.feature_extraction.text.ENGLISH_STOP_WORDS collections.Counter matplotlib.pyplot seaborn sklearn.metrics...
transformers.get_linear_schedule_with_warmup time datetime random sklearn.metrics.matthews_corrcoef sklearn.naive_bayes.MultinomialNB sklearn.pipeline.make_pipeline sklearn.ensemble....
transformers.BertForSequenceClassification torch.utils.data.DataLoader torch.utils.data.RandomSampler transformers.AdamW transformers.get_linear_schedule_with_warmup sklearn.metrics.f1_score random ...
基于PSCAD软件,对变压器的物理模型进行建模,供大家学习
transformers.BertForSequenceClassification transformers.Trainer transformers.TrainingArguments lime.lime_text.LimeTextExplainer warnings sklearn.feature_extraction.text.TfidfVectorizer torch torch....
transformers.BertForSequenceClassification transformers.Trainer transformers.TrainingArguments torch.utils.data.Dataset sklearn.model_selection.train_test_split sklearn.metrics.accuracy_score sklearn....
transformers.TFDistilBertForSequenceClassification transformers.create_optimizer keras.callbacks.ReduceLROnPlateau nltk.stem.PorterStemmer tensorflow.keras.Sequential textblob.TextBlob sklearn.feature...
transformers.BertModel sklearn.model_selection.train_test_split sklearn.preprocessing.LabelEncoder torch torch.nn torch.optim torch.optim.lr_scheduler.ReduceLROnPlateau torch.utils.data.Dataset torch....
transformers.BertModel transformers.BertTokenizer wordcloud.WordCloud textblob.TextBlob torch torch.nn nltk nltk.corpus.stopwords nltk.tokenize.word_tokenize warnings spacy sqlite3 sklearn.feature_...
标题 "inp.zip_This Just In.._test" 暗示了这是一个与“新消息”或“最新更新”相关的项目,结合描述中的“nlp”,我们可以推断这是一份关于自然语言处理(Natural Language Processing,NLP)的样例代码。...
Load flow studies determine if system voltages remain within specified limits under normal or emergency operating conditions, and whether equipment such as transformers and conductors are overloaded....
transformers.pipeline re warnings sklearn.metrics.classification_report sklearn.metrics.confusion_matrix sklearn.metrics.roc_curve sklearn.metrics.auc sklearn.preprocessing.label_binarize sklearn....
from fast_transformers.attention import MultiheadAttention class TransformerModel(nn.Module): def __init__(self, d_model, num_heads): super(TransformerModel, self).__init__() self.attn = ...
sklearn_features.transformers.DataFrameSelector sklearn.linear_model.SGDRegressor IPython.display.Image IPython.display.display sklearn.preprocessing.RobustScaler sklearn.decomposition.PCA sklearn....