`

(转)使用 udev 高效、动态地管理 Linux 设备文件

 
阅读更多

原文:http://www.ibm.com/developerworks/cn/linux/l-cn-udev/index.html?ca=drs-cn-0304

本文以通俗的方法阐述 udev 及相关术语的概念、udev 的配置文件和规则文件,然后以 Red Hat Enterprise Server 为平台演示一些管理设备文件和查询设备信息的实例。本文会使那些需要高效地、方便地管理 Linux 设备的用户受益匪浅,这些用户包括 Linux 最终用户、设备驱动开发人员、设备测试人员和系统管理员等等。

概述:

Linux 用户常常会很难鉴别同一类型的设备名,比如 eth0, eth1, sda, sdb 等等。通过观察这些设备的内核设备名称,用户通常能知道这些是什么类型的设备,但是不知道哪一个设备是他们想要的。例如,在一个充斥着本地磁盘和光纤磁盘的设备名清单 (/dev/sd*) 中,用户无法找到一个序列号为“35000c50000a7ef67”的磁盘。在这种情况下,udev 就能动态地在 /dev目录里产生自己想要的、标识性强的设备文件或者设备链接,以此帮助用户方便快捷地找到所需的设备文件。

udev 简介
什么是 udev?
udev 是 Linux2.6 内核里的一个功能,它替代了原来的 devfs,成为当前 Linux 默认的设备管理工具。udev 以守护进程的形式运行,通过侦听内核发出来的 uevent 来管理 /dev目录下的设备文件。不像之前的设备管理工具,udev 在用户空间 (user space) 运行,而不在内核空间 (kernel space) 运行。

使用 udev 的好处:
我们都知道,所有的设备在 Linux 里都是以设备文件的形式存在。在早期的 Linux 版本中,/dev目录包含了所有可能出现的设备的设备文件。很难想象 Linux 用户如何在这些大量的设备文件中找到匹配条件的设备文件。现在 udev 只为那些连接到 Linux 操作系统的设备产生设备文件。并且 udev 能通过定义一个 udev 规则 (rule) 来产生匹配设备属性的设备文件,这些设备属性可以是内核设备名称、总线路径、厂商名称、型号、序列号或者磁盘大小等等。

动态管理:当设备添加 / 删除时,udev 的守护进程侦听来自内核的 uevent,以此添加或者删除 /dev下的设备文件,所以 udev 只为已经连接的设备产生设备文件,而不会在 /dev下产生大量虚无的设备文件。自定义命名规则:通过 Linux 默认的规则文件,udev 在 /dev/ 里为所有的设备定义了内核设备名称,比如 /dev/sda、/dev/hda、/dev/fd等等。由于 udev 是在用户空间 (user space) 运行,Linux 用户可以通过自定义的规则文件,灵活地产生标识性强的设备文件名,比如 /dev/boot_disk、/dev/root_disk、/dev/color_printer等等。设定设备的权限和所有者 / 组:udev 可以按一定的条件来设置设备文件的权限和设备文件所有者 / 组。在不同的 udev 版本中,实现的方法不同,在“如何配置和使用 udev”中会详解。下面的流程图显示 udev 添加 / 删除设备文件的过程。

图 1. udev 工作流程图:


相关术语:
设备文件:由于本文以较通俗的方式讲解 udev,所以设备文件是泛指在 /dev/下,可被应用程序用来和设备驱动交互的文件。而不会特别地区分设备文件、设备节点或者设备特殊文件。devfs:devfs是 Linux 早期的设备管理工具,已经被 udev 取代。sysfs:sysfs是 Linux 2.6 内核里的一个虚拟文件系统 (/sys)。它把设备和驱动的信息从内核的设备模块导出到用户空间 (userspace)。从该文件系统中,Linux 用户可以获取很多设备的属性。devpath:本文的 devpath是指一个设备在 sysfs文件系统 (/sys)下的相对路径,该路径包含了该设备的属性文件。udev 里的多数命令都是针对 devpath操作的。例如:sda的 devpath是 /block/sda,sda2 的 devpath是 /block/sda/sda2。内核设备名称:设备在 sysfs里的名称,是 udev 默认使用的设备文件名。

如何配置和使用 udev
下面会以 RHEL4.8 和 RHEL5.3 为平台,分别描述 udev 的配置和使用:

下载和安装 udev
从 Fedora3 和 Red Hat Enterprise4 开始,udev 就是默认的设备管理工具,无需另外下载安装。

清单 1. 检查 udev 在 RHEL4.8 里的版本和运行情况
[root@HOST_RHEL4 dev]# rpm -qa |grep -i udev
udev-039-10.29.el4
[root@HOST_RHEL4 ~]# uname -r
2.6.9-89.ELsmp
[root@HOST_RHEL4 ~]# ps -ef |grep udev
root     21826     1  0 Dec09 ?        00:00:00 udevd清单 2. 检查 udev 在 RHEL5.3 里的版本和运行情况
[root@HOST_RHEL5 ~]# rpm -qa |grep -i udev
udev-095-14.19.el5
[root@HOST_RHEL5 sysconfig]# uname -r
2.6.18-128.el5
[root@HOST_RHEL5 sysconfig]# ps -ef|grep udev
root      5466     1  0 18:32 ?      00:00:00 /sbin/udevd -d如果 Linux 用户想更新 udev 包,可以从 http://www.kernel.org/pub/linux/utils/kernel/hotplug/下载并安装。

udev 的配置文件 (/etc/udev/udev.conf)

清单 3. RHEL4.8下 udev 的配置文件
[root@HOST_RHEL4 dev]# cat /etc/udev/udev.conf
# udev.conf
# The main config file for udev
#
# This file can be used to override some of udev's default values
# for where it looks for files, and where it places device nodes.
#
# WARNING: changing any value, can cause serious system breakage!
#

# udev_root - where in the filesystem to place the device nodes
udev_root="/dev/"

# udev_db - The name and location of the udev database.
udev_db="/dev/.udev.tdb"

# udev_rules - The name and location of the udev rules file
udev_rules="/etc/udev/rules.d/"

# udev_permissions - The name and location of the udev permission file
udev_permissions="/etc/udev/permissions.d/"

# default_mode - set the default mode for all nodes that have no
#                explicit match in the permissions file
default_mode="0600"

# default_owner - set the default owner for all nodes that have no
#                 explicit match in the permissions file
default_owner="root"

# default_group - set the default group for all nodes that have no
#                 explicit match in the permissions file
default_group="root"

# udev_log - set to "yes" if you want logging, else "no"
udev_log="no"Linux 用户可以通过该文件设置以下参数:

udev_root:udev 产生的设备所存放的目录,默认值是 /dev/。建议不要修改该参数,因为很多应用程序默认会从该目录调用设备文件。udev_db:udev 信息存放的数据库或者所在目录,默认值是 /dev/.udev.tdb。udev_rules:udev 规则文件的名字或者所在目录,默认值是 /etc/udev/rules.d/。udev_permissions:udev 权限文件的名字或者所在目录,默认值是 /etc/udev/permissions.d/。default_mode/ default_owner/ default_group:如果设备文件的权限没有在权限文件里指定,就使用该参数作为默认权限,默认值分别是:0600/root/root。udev_log:是否需要 syslog记录 udev 日志的开关,默认值是 no。清单 4. RHEL5.3 下 udev 的配置文件
[root@HOST_RHEL5 ~]# cat /etc/udev/udev.conf
# udev.conf

# The initial syslog(3) priority: "err", "info", "debug" or its
# numerical equivalent. For runtime debugging, the daemons internal
# state can be changed with: "udevcontrol log_priority=<value>".
udev_log="err"udev_log:syslog记录日志的级别,默认值是 err。如果改为 info 或者 debug 的话,会有冗长的 udev 日志被记录下来。

实际上在 RHEL5.3 里,除了配置文件里列出的参数 udev_log外,Linux 用户还可以修改参数 udev_root和 udev_rules( 请参考上面的“RHEL4.8 的 udev 配置文件”),只不过这 2 个参数是不建议修改的,所以没显示在 udev.conf 里。

可见该版本的 udev.conf 改动不小:syslog默认会记录 udev 的日志,Linux 用户只能修改日志的级别 (err、info、degub 等 );设备的权限不能在 udev.conf 里设定,而是要在规则文件 (*.rules) 里设定。

通过 udev 设定设备文件的权限
在 RHEL4.8 的 udev,设备的权限是通过权限文件来设置。

清单 5. RHEL4.8 下 udev 的权限文件
[root@HOST_RHEL4 ~]# cat /etc/udev/permissions.d/50-udev.permissions
……
# disk devices
hd*:root:disk:0660
sd*:root:disk:0660
dasd*:root:disk:0660
ataraid*:root:disk:0660
loop*:root:disk:0660
md*:root:disk:0660
ide/*/*/*/*/*:root:disk:0660
discs/*/*:root:disk:0660
loop/*:root:disk:0660
md/*:root:disk:0660

# tape devices
ht*:root:disk:0660
nht*:root:disk:0660
pt[0-9]*:root:disk:0660
npt*:root:disk:0660
st*:root:disk:0660
nst*:root:disk:0660
……RHEL4.8 里 udev 的权限文件会为所有常用的设备设定权限和 ownership,如果有设备没有被权限文件设置权限,udev 就按照 udev.conf 里的默认权限值为这些设备设置权限。由于篇幅的限制,上图只显示了 udev 权限文件的一部分,该部分设 置了所有可能连接上的磁盘设备和磁带设备的权限和 ownership。

而在 RHEL5.3 的 udev,已经没有权限文件,所有的权限都是通过规则文件 (*.rules)来设置,在下面的规则文件配置过程会介绍到。

udev 的规则和规则文件
规则文件是 udev 里最重要的部分,默认是存放在 /etc/udev/rules.d/下。所有的规则文件必须以“.rules”为后缀名。RHEL 有默认的规则文件,这些默认规则文件不仅为设备产生内核设备名称,还会产生标识性强的符号链接。例如:

[root@HOST_RHEL5 ~]# ls /dev/disk/by-uuid/
16afe28a-9da0-482d-93e8-1a9474e7245c但这些链接名较长,不易调用,所以通常需要自定义规则文件,以此产生易用且标识性强的设备文件或符号链接。

此外,一些应用程序也会在 /dev/下产生一些方便调用的符号链接。例如规则 40-multipath.rules 为磁盘产生下面的符号链接:

[root@ HOST_RHEL5 ~]# ls /dev/mpath/*
/dev/mpath/mpath0  /dev/mpath/mpath0p1  /dev/mpath/mpath0p2udev 按照规则文件名的字母顺序来查询全部规则文件,然后为匹配规则的设备管理其设备文件或文件链接。虽然 udev 不会因为一个设备匹配了一条规则而停止解析后面的规则文件,但是解析的顺序仍然很重要。通常情况下,建议让自己想要的规则文件最先被解析。比如,创建一个名为 /etc/udev/rules.d/10-myrule.rules的文件,并把你的规则写入该文件,这样 udev 就会在解析系统默认的规则文件之前解析到你的文件。

RHEL5.3 的 udev 规则文件比 RHEL4.8 里的更完善。受篇幅的限制,同时也为了不让大家混淆,本文将不对 RHEL4.8 里的规则文件进行详解,下面关于规则文件的配置和实例都是在 RHEL5.3 上进行的。如果大家需要配置 RHEL4 的 udev 规则文件,可以先参照下面 RHEL5.3 的配置过程,然后查询 RHEL4 里的用户手册 (man udev) 后进行配置。

在规则文件里,除了以“#”开头的行(注释),所有的非空行都被视为一条规则,但是一条规则不能扩展到多行。规则都是由多个 键值对(key-value pairs)组成,并由逗号隔开,键值对可以分为 条件匹配键值对( 以下简称“匹配键 ”) 和 赋值键值对( 以下简称“赋值键 ”),一条规则可以有多条匹配键和多条赋值键。匹配键是匹配一个设备属性的所有条件,当一个设备的属性匹配了该规则里所有的匹配键,就认为这条规则生效,然后按照赋值键的内容,执行该规则的赋值。下面是一个简单的规则:

清单 6. 简单说明键值对的例子
KERNEL=="sda", NAME="my_root_disk", MODE="0660"KERNEL 是匹配键,NAME 和 MODE 是赋值键。这条规则的意思是:如果有一个设备的内核设备名称为 sda,则该条件生效,执行后面的赋值:在 /dev下产生一个名为 my_root_disk的设备文件,并把设备文件的权限设为 0660。

通过这条简单的规则,大家应该对 udev 规则有直观的了解。但可能会产生疑惑,为什么 KERNEL 是匹配键,而 NAME 和 MODE 是赋值键呢?这由中间的操作符 (operator) 决定。

仅当操作符是“==”或者“!=”时,其为匹配键;若为其他操作符时,都是赋值键。

RHEL5.3 里 udev 规则的所有操作符:
“==”:比较键、值,若等于,则该条件满足;

“!=”: 比较键、值,若不等于,则该条件满足;

“=”: 对一个键赋值;

“+=”:为一个表示多个条目的键赋值。

“:=”:对一个键赋值,并拒绝之后所有对该键的改动。目的是防止后面的规则文件对该键赋值。
RHEL5.3 里 udev 规则的匹配键
ACTION: 事件 (uevent) 的行为,例如:add( 添加设备 )、remove( 删除设备 )。

KERNEL: 内核设备名称,例如:sda, cdrom。

DEVPATH:设备的 devpath 路径。

SUBSYSTEM: 设备的子系统名称,例如:sda 的子系统为 block。

BUS: 设备在 devpath 里的总线名称,例如:usb。

DRIVER: 设备在 devpath 里的设备驱动名称,例如:ide-cdrom。

ID: 设备在 devpath 里的识别号。

SYSFS{filename}: 设备的 devpath 路径下,设备的属性文件“filename”里的内容。

例如:SYSFS{model}==“ST936701SS”表示:如果设备的型号为 ST936701SS,则该设备匹配该 匹配键。

在一条规则中,可以设定最多五条 SYSFS 的 匹配键。

ENV{key}: 环境变量。在一条规则中,可以设定最多五条环境变量的 匹配键。

PROGRAM:调用外部命令。

RESULT: 外部命令 PROGRAM 的返回结果。例如:

PROGRAM=="/lib/udev/scsi_id -g -s $devpath", RESULT=="35000c50000a7ef67"调用外部命令 /lib/udev/scsi_id查询设备的 SCSI ID,如果返回结果为 35000c50000a7ef67,则该设备匹配该 匹配键。
RHEL5.3 里 udev 的重要赋值键
NAME:在 /dev下产生的设备文件名。只有第一次对某个设备的 NAME 的赋值行为生效,之后匹配的规则再对该设备的 NAME 赋值行为将被忽略。如果没有任何规则对设备的 NAME 赋值,udev 将使用内核设备名称来产生设备文件。

SYMLINK:为 /dev/下的设备文件产生符号链接。由于 udev 只能为某个设备产生一个设备文件,所以为了不覆盖系统默认的 udev 规则所产生的文件,推荐使用符号链接。

OWNER, GROUP, MODE:为设备设定权限。

ENV{key}:导入一个环境变量。
RHEL5.3 里 udev 的值和可调用的替换操作符
在键值对中的键和操作符都介绍完了,最后是值 (value)。Linux 用户可以随意地定制 udev 规则文件的值。例如:my_root_disk, my_printer。同时也可以引用下面的替换操作符:

$kernel, %k:设备的内核设备名称,例如:sda、cdrom。

$number, %n:设备的内核号码,例如:sda3 的内核号码是 3。

$devpath, %p:设备的 devpath路径。

$id, %b:设备在 devpath里的 ID 号。

$sysfs{file}, %s{file}:设备的 sysfs里 file 的内容。其实就是设备的属性值。
例如:$sysfs{size} 表示该设备 ( 磁盘 ) 的大小。

$env{key}, %E{key}:一个环境变量的值。

$major, %M:设备的 major 号。

$minor %m:设备的 minor 号。

$result, %c:PROGRAM 返回的结果。

$parent, %P:父设备的设备文件名。

$root, %r:udev_root的值,默认是 /dev/。

$tempnode, %N:临时设备名。

%%:符号 % 本身。

$$:符号 $ 本身。

清单 7. 说明替换操作符的规则例子
KERNEL=="sd*", PROGRAM="/lib/udev/scsi_id -g -s %p", \
RESULT=="35000c50000a7ef67", SYMLINK="%k_%c"该规则的执行:如果有一个内核设备名称以 sd 开头,且 SCSI ID 为 35000c50000a7ef67,则为设备文件产生一个符号链接“sda_35000c50000a7ef67”.

--------------------------------------------------------------------------------
回页首
制定 udev 规则和查询设备信息的实例:
如何查找设备的信息 ( 属性 ) 来制定 udev 规则:

当我们为指定的设备设定规则时,首先需要知道该设备的属性,比如设备的序列号、磁盘大小、厂商 ID、设备路径等等。通常我们可以通过以下的方法获得:

查询sysfs文件系统:
前面介绍过,sysfs 里包含了很多设备和驱动的信息。

例如:设备 sda 的 SYSFS{size} 可以通过 cat /sys/block/sda/size得到;SYSFS{model} 信息可以通过 cat /sys/block/sda/device/model得到。
udevinfo命令:
udevinfo 可以查询 udev 数据库里的设备信息。例如:用 udevinfo 查询设备 sda 的 model 和 size 信息:

清单 8. 通过 udevinfo 查询设备属性的例子
[root@HOST_RHEL5 rules.d]# udevinfo -a -p /block/sda | egrep "model|size"
    SYSFS{size}=="71096640"
    SYSFS{model}=="ST936701SS      "其他外部命令:
清单 9. 通过 scsi_id 查询磁盘的 SCSI_ID 的例子
[root@HOST_RHEL5 ~]# scsi_id -g -s /block/sda
35000c50000a7ef67udev 的简单规则:

清单 10. 产生网卡设备文件的规则
SUBSYSTEM=="net", SYSFS{address}=="AA:BB:CC:DD:EE:FF", NAME="public_NIC"该规则表示:如果存在设备的子系统为 net,并且地址 (MAC address) 为“AA:BB:CC:DD:EE:FF”,为该设备产生一个名为 public_NIC 的设备文件。

清单 11. 为指定大小的磁盘产生符号链接的规则
SUBSYSTEM=="block", SYSFS{size}=="71096640", SYMLINK ="my_disk"该规则表示:如果存在设备的子系统为 block,并且大小为 71096640(block),则为该设备的设备文件名产生一个名为 my_disk 的符号链接。

清单 12. 通过外部命令为指定序列号的磁盘产生设备文件的规则
KERNEL=="sd*[0-9]", PROGRAM=="/lib/udev/scsi_id -g -s %p", \
RESULT=="35000c50000a7ef67", NAME +="root_disk%n"该规则表示:如果存在设备的内核设备名称是以 sd 开头 ( 磁盘设备 ),以数字结尾 ( 磁盘分区 ),并且通过外部命令查询该设备的 SCSI_ID 号为“35000c50000a7ef67”,则产生一个以 root_disk 开头,内核号码结尾的设备文件,并替换原来的设备文件(如果存在的话)。例如:产生设备名 /dev/root_disk2,替换原来的设备名 /dev/sda2。

运用这条规则,可以在 /etc/fstab里保持系统分区名称的一致性,而不会受驱动加载顺序或者磁盘标签被破坏的影响,导致操作系统启动时找不到系统分区。

其他常用的 udev 命令:

udevtest:
udevtest会针对一个设备,在不需要 uevent 触发的情况下模拟一次 udev的运行,并输出查询规则文件的过程、所执行的行为、规则文件的执行结果。通常使用 udevtest来调试规则文件。以下是一个针对设备 sda 的 udevtest例子。由于 udevtest是扫描所有的规则文件 ( 包括系统自带的规则文件 ),所以会产生冗长的输出。为了让读者清楚地了解 udevtest,本例只在规则目录里保留一条规则:

清单 13. 为 udevtest 保留的规则
KERNEL=="sd*", PROGRAM="/lib/udev/scsi_id -g -s %p", RESULT=="35000c50000a7ef67", \
NAME="root_disk%n", SYMLINK="symlink_root_disk%n"清单 14. udevtest 的执行过程
[root@HOST_RHEL5 rules.d]# udevtest /block/sda
main: looking at device '/block/sda' from subsystem 'block'
run_program: '/lib/udev/scsi_id -g -s /block/sda'
run_program: '/lib/udev/scsi_id' (stdout) '35000c50000a7ef67'
run_program: '/lib/udev/scsi_id' returned with status 0
udev_rules_get_name: reset symlink list
udev_rules_get_name: add symlink 'symlink_root_disk'
udev_rules_get_name: rule applied, 'sda' becomes 'root_disk'
udev_device_event: device '/block/sda' already in database, \
                  validate currently present symlinks
udev_node_add: creating device node '/dev/root_disk', major = '8', \
            minor = '0', mode = '0660', uid = '0', gid = '0'
udev_node_add: creating symlink '/dev/symlink_root_disk' to 'root_disk'可以看出,udevtest对 sda 执行了外部命令 scsi_id, 得到的 stdout 和规则文件里的 RESULT 匹配,所以该规则匹配。然后 ( 模拟 ) 产生设备文件 /dev/root_disk和符号链接 /dev/symlink_root_disk,并为其设定权限。
start_udev:
start_dev命令重启 udev守护进程,并对所有的设备重新查询规则目录下所有的规则文件,然后执行所匹配的规则里的行为。通常使用该命令让新的规则文件立即生效:

清单 15. start_udev 的执行过程
[root@HOST_RHEL5 rules.d]# start_udev
Starting udev:                                             [  OK  ]start_udev一般没有标准输出,所有的 udev 相关信息都按照配置文件 (udev.conf)的参数设置,由 syslog记录。
  • 大小: 24.4 KB
分享到:
评论

相关推荐

    使用 udev 高效、动态地管理 Linux 设备文件

    Linux 系统中的设备管理是操作系统与硬件交互的关键部分,其中udev是现代Linux发行版中用于动态管理设备文件的核心组件。udev替代了早期的devfs,提供了更为灵活和高效的设备命名及管理机制。 udev的核心功能在于它...

    linux设备管理工具--udev

    - **动态管理**:udev能够根据内核发送的事件动态地创建或删除设备文件,这意味着只有实际连接的设备才会在`/dev`目录下生成对应的设备文件,避免了大量的无用设备文件占据磁盘空间。 - **自定义命名规则**:通过...

    掌握udev 掌握udev

    udev 是 Linux 系统中用于管理设备文件的用户空间程序,它取代了早期的静态设备文件管理和内核驱动的 devfs。udev 的出现解决了设备映射不确定性、设备号不足、/dev 目录文件过多以及命名不灵活等问题,特别是在处理...

    linux设备文件.pdf

    devfs是在Linux 2.4内核中引入的,用于动态管理设备文件,但由于存在一些未修复的bug和作者停止维护,它在2.6内核中被udev取代。udev是目前广泛使用的设备管理系统,它依赖于sysfs和tmpfs虚拟文件系统。sysfs提供...

    udev文件系统的使用和基本工作原理分析.rar

    udev是Linux系统中用于管理设备节点的现代机制,它取代了传统的devfs和sysfs。在深入探讨udev的使用和工作原理之前,我们先要理解设备节点的基本概念。设备节点是Linux内核与用户空间程序通信的一种方式,它们在/dev...

    suse使用udev管理asm.docx

    在SUSE Linux Enterprise Server (SLES) 11中,udev是系统设备管理的主要工具,它负责管理和控制系统的硬件设备,如磁盘、网络接口等。对于Oracle 11gR2 RAC(Real Application Clusters)的部署,udev的配置至关...

    LINUX设备驱动程序(Linux.Device.Driver)

    第三版涵盖了2.6版本的Linux内核,这意味着书中会介绍如udev设备管理系统、hotplug热插拔技术、PCI Express总线支持等现代Linux内核的特性。 通过阅读《LINUX设备驱动程序》(Linux.Device.Driver) 第三版,开发者将...

    Linux device-mapper-udev-CRS-ASM_v3.6.pdf

    `udev`是Linux内核的一部分,负责管理系统的设备节点,并确保这些设备节点在系统启动时正确创建、删除或重命名。`udev`能够自动识别新连接的硬件设备并为其分配正确的设备文件名,这对于高可用性集群特别重要,因为...

    LINUX内核探秘:深入解析文件系统和设备驱动

    它将带领读者探索Linux的内部世界,理解文件系统如何高效地管理存储,以及设备驱动如何使操作系统与硬件协同工作。通过学习这些知识,读者可以提升在Linux系统开发、维护和优化方面的专业能力。

    Linux设备驱动程序学习(6)-高级字符驱动程序操作[(3)设备文件的访问控制] - Linux设备驱动程序

    在Linux系统中,设备驱动程序是操作系统与硬件...通过理解和熟练掌握上述知识点,开发者能够更好地设计和实现Linux系统中的高级字符驱动程序,有效地管理设备文件的访问控制,从而构建稳定、安全的设备驱动解决方案。

    udev-114版本

    在arm-linux系统中,使用udev-114版本可以实现更高效、更全面的设备管理,特别是对于U盘和USB设备的自动挂载,大大提升了用户体验。对于开发者和系统管理员来说,理解和掌握udev的使用方法是至关重要的,以便更好地...

    Linux设备驱动程序

    2. **设备模型**:讲解Linux设备模型,如总线、设备和驱动模型,如何通过udev管理系统识别和配置设备。 3. **字符设备驱动**:深入讲解字符设备驱动的开发,包括设备节点的创建、ioctl命令、中断处理等。 4. **块...

    Linux设备驱动程序(中文版第三版).pdf

    在Linux设备模型部分,书里会讲解现代Linux内核中的总线、设备、驱动模型,包括sysfs和procfs接口,以及如何通过udev管理设备节点。这些内容帮助读者理解如何在内核中组织和管理设备。 接着,书中详细讨论了字符...

    LINUX设备驱动程序之USB驱动程序 .rar

    udev是现代Linux系统中的设备管理器,它基于udev规则动态创建设备节点,使得设备的管理和权限控制更加灵活。 总的来说,Linux设备驱动程序和USB驱动程序是Linux系统中至关重要的部分,它们确保了系统对硬件设备的...

    《Linux 设备驱动开发详解》(宋宝华) 学习笔记.zip

    2. **设备模型**:Linux设备模型是一个抽象层次,它提供了一种统一的方式来管理设备。学习如何使用`device`、`driver`、`class`和`bus`等结构,以及`udev`规则,将帮助你更好地组织和管理驱动程序。 3. **字符设备...

    linux设备驱动程序 (中文第二版)

    2. **设备模型**:Linux设备模型是理解驱动程序的关键,书中详细阐述了设备节点、主设备号、次设备号的概念,以及现代内核中的统一设备模型(Udev),这有助于管理和注册设备。 3. **驱动程序架构**:书中会讲解...

    linux 设备驱动代码4.0 随书代码

    它负责在运行时动态地创建设备节点,并根据设备的属性如制造商、序列号等分配设备文件。在udev中,你可以找到关于如何编写规则文件来控制设备节点创建、权限设置以及设备事件处理的代码示例。这对于理解Linux如何...

Global site tag (gtag.js) - Google Analytics