转自:http://blog.csdn.net/lidongdong_xynu/article/details/7445579
Unity学习笔记——MonoBehaviour类Invoke, Coroutine
MonoBehaviour概述
MonoBehaviour 表示一个单一的行为。Unity中用户对游戏对象的操作被分割成若干个单一行为。每个单一行为都作为一个MonoBehaviour类来封装。再生成每个MonoBehaviour类的实例,并作为组件嵌入游戏对象。然后按照一定的顺序(从下到上)调用每个对象的重载方法来实现游戏对象的全部行为。
创建
在菜单Assets->create中选择javascript活C# script创建一个脚本类。Unity规定:这些类都必须继承自MonoBehaviour。javascript 的脚本类自动继承MonoBehaviour,c#脚本类必须显式继承这个类。
特别之处
继承自MonoBehaviour的类,不需要自己创建它的实例,也不能自己创建(如 new 类名)。因为所有从MonoBehaviour继承过来的类,unity都会自动创建实例,并且调用被重载的方法,如我们经常用到的Awake,Start, Update等。而普通类,就可以用new来创建实例了。
异步函数
在一个方法执行时调用另一个方法。而被调用的方法或者其中的某些语句不是立刻执行,而是过一段时间后才执行。
MonoBehaviour提供了两种异步方法
调用(Invoke)
协程(Coroutine)
调用(Invoke)
function Invoke (methodName: string, time : float) : void
functionInvokeRepeating (methodName : String,time : float, repeatRate : float) : void
function CancelInvoke () : void
function IsInvoking (methodName: string) : bool
协程(Coroutine)
function StartCoroutine (routine: IEnumerator) : Coroutine
function StartCoroutine (methodName: string, value : object = null) : Coroutine
function StopCoroutine (methodName: string) : void
function StopAllCoroutines () : void
协程介绍
协同程序与线程差不多,也就是一条执行序列,拥有自己独立的栈,局部变量和指令指针,同时又与其它协同程序共享全局变量和其它大部分东西。线程与协同程序的主要区别在于,一个具有多线程的程序可以同时运行几个线程,而协同程序却需要彼此协作地运行。就是说,一个具有多个协同程序的程序在任何时刻只能运行一 个协同程序,并且正在运行的协同程序只会在其显示地挂起时,它的执行才会暂停。
Unity中协程
一个协同程序在执行过程中,可以在任意位置使用yield语句。yield的返回值控制何时恢复协同程序向下执行。协同程序在对象自有帧执行过程中堪称优秀。协同程序在性能上没有更多的开销。StartCoroutine函数是立刻返回的,但是yield可以延迟结果。直到协同程序执行完毕。
function StartCoroutine (routine: IEnumerator) : Coroutine
参数表:IEnumerator
IEnumerator是枚举数接口。函数需要一个实现了这个接口的YieldInstruction对象。可以创建一个WaitForSeconds对象,在它的构造函数中传入挂起时间。
返回值:Coroutine
只用来表示一个协同程序实例的引用。没有任何暴露的变量和函数。一个coroutine是一个函数,它能在中断完成前挂起执行。
function StartCoroutine (methodName: string, value : object = null) : Coroutine
直接传入一函数名,开销大些。
比较
Invoke方法:执行没有被挂起,相当于设置完被调用函数的执行时间后即时向下执行。应用到没隔一段时间执行某个函数很方便。
Coroutine方法:新开一条执行序列(跟新建线程差不多)并挂起,等待中断指令结束。开销不大。当需要挂起当前执行时使用。比如Player死了一条命后消失,再过1.5秒后重新出现,就可以用将协同程序挂起。
gameObject.renderer.enabled= false;
yieldWaitForSeconds(1.5f);
gameObject.renderer.enabled= true;
相关推荐
总的来说,Unity3D的定时器功能通过`Time.deltaTime`、`Invoke`、`InvokeRepeating`和`Coroutine`提供了丰富的选项来实现时间相关的游戏逻辑。理解并掌握这些工具,开发者可以更好地控制游戏节奏,创建出更逼真、更...
在这个例子中,`NewBehaviourScript`是继承自`MonoBehaviour`的类,这意味着它可以直接附加到Unity3D的游戏对象上,并且可以访问Unity的生命周期方法。`Start()`方法在游戏对象初始化时被调用一次,这里是设置定时器...
在C#中,我们可以创建一个`ScriptableObject`或`MonoBehaviour`基类的子类,这样就能与Unity的引擎进行交互。 1. **时间管理基础**: - `Time`类:Unity3D提供了一个内置的`Time`类,包含了关于游戏时间的信息,如...
# 【spring-ai-bedrock-converse-1.0.0-M7.jar中文文档.zip】 中包含: 中文文档:【spring-ai-bedrock-converse-1.0.0-M7-javadoc-API文档-中文(简体)版.zip】 jar包下载地址:【spring-ai-bedrock-converse-1.0.0-M7.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【spring-ai-bedrock-converse-1.0.0-M7.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【spring-ai-bedrock-converse-1.0.0-M7.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【spring-ai-bedrock-converse-1.0.0-M7-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: spring-ai-bedrock-converse-1.0.0-M7.jar中文文档.zip,java,spring-ai-bedrock-converse-1.0.0-M7.jar,org.springframework.ai,spring-ai-bedrock-converse,1.0.0-M7,org.springframework.ai.bedrock.converse,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,springframework,spring,ai,bedrock,converse,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压 【spring-ai-bedrock-converse-1
房地产 -可视化管理课件.ppt
# 【tokenizers-***.jar***文档.zip】 中包含: ***文档:【tokenizers-***-javadoc-API文档-中文(简体)版.zip】 jar包下载地址:【tokenizers-***.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【tokenizers-***.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【tokenizers-***.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【tokenizers-***-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: tokenizers-***.jar***文档.zip,java,tokenizers-***.jar,ai.djl.huggingface,tokenizers,***,ai.djl.engine.rust,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,djl,huggingface,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压 【tokenizers-***.jar***文档.zip】,再解压其中的 【tokenizers-***-javadoc-API文档-中文(简体)版.zip】,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件; # Maven依赖: ``` <dependency> <groupId>ai.djl.huggingface</groupId> <artifactId>tokenizers</artifactId> <version>***</version> </dependency> ``` # Gradle依赖: ``` Gradle: implementation group: 'ai.djl.huggingface', name: 'tokenizers', version: '***' Gradle (Short): implementation 'ai.djl.huggingface:tokenizers:***' Gradle (Kotlin): implementation("ai.djl.huggingface:tokenizers:***") ``` # 含有的 Java package(包): ``` ai.djl.engine.rust ai.djl.engine.rust.zoo ai.djl.huggingface.tokenizers ai.djl.huggingface.tokenizers.jni ai.djl.huggingface.translator ai.djl.huggingface.zoo ``` # 含有的 Java class(类): ``` ai.djl.engine.rust.RsEngine ai.djl.engine.rust.RsEngineProvider ai.djl.engine.rust.RsModel ai.djl.engine.rust.RsNDArray ai.djl.engine.rust.RsNDArrayEx ai.djl.engine.rust.RsNDArrayIndexer ai.djl.engine.rust.RsNDManager ai.djl.engine.rust.RsSymbolBlock ai.djl.engine.rust.RustLibrary ai.djl.engine.rust.zoo.RsModelZoo ai.djl.engine.rust.zoo.RsZooProvider ai.djl.huggingface.tokenizers.Encoding ai.djl.huggingface.tokenizers.HuggingFaceTokenizer ai.djl.huggingface.tokenizers.HuggingFaceTokenizer.Builder ai.djl.hu
内容概要:本文详细介绍了如何使用MATLAB构建和应用BP神经网络预测模型。首先,通过读取Excel数据并进行预处理,如归一化处理,确保数据的一致性和有效性。接着,配置网络结构,选择合适的训练算法(如SCG),设置训练参数(如最大迭代次数、目标误差等)。然后,进行模型训练,并通过可视化窗口实时监控训练过程。训练完成后,利用测试集评估模型性能,计算均方误差(MSE)和相关系数(R²),并通过图表展示预测效果。最后,将训练好的模型保存以便后续调用,并提供了一个简单的预测函数,确保新数据能够正确地进行归一化和预测。 适合人群:具有一定MATLAB基础,从事数据分析、机器学习领域的研究人员和技术人员。 使用场景及目标:适用于需要对多维数据进行预测的任务,如电力负荷预测、金融数据分析等。主要目标是帮助用户快速搭建一个可用的BP神经网络预测系统,提高预测准确性。 其他说明:文中提供了完整的代码框架和详细的注释,便于理解和修改。同时,强调了数据预处理的重要性以及一些常见的注意事项,如数据量的要求、归一化的必要性等。
# 【tokenizers-***.jar***文档.zip】 中包含: ***文档:【tokenizers-***-javadoc-API文档-中文(简体)版.zip】 jar包下载地址:【tokenizers-***.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【tokenizers-***.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【tokenizers-***.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【tokenizers-***-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: tokenizers-***.jar***文档.zip,java,tokenizers-***.jar,ai.djl.huggingface,tokenizers,***,ai.djl.engine.rust,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,djl,huggingface,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压 【tokenizers-***.jar***文档.zip】,再解压其中的 【tokenizers-***-javadoc-API文档-中文(简体)版.zip】,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件; # Maven依赖: ``` <dependency> <groupId>ai.djl.huggingface</groupId> <artifactId>tokenizers</artifactId> <version>***</version> </dependency> ``` # Gradle依赖: ``` Gradle: implementation group: 'ai.djl.huggingface', name: 'tokenizers', version: '***' Gradle (Short): implementation 'ai.djl.huggingface:tokenizers:***' Gradle (Kotlin): implementation("ai.djl.huggingface:tokenizers:***") ``` # 含有的 Java package(包): ``` ai.djl.engine.rust ai.djl.engine.rust.zoo ai.djl.huggingface.tokenizers ai.djl.huggingface.tokenizers.jni ai.djl.huggingface.translator ai.djl.huggingface.zoo ``` # 含有的 Java class(类): ``` ai.djl.engine.rust.RsEngine ai.djl.engine.rust.RsEngineProvider ai.djl.engine.rust.RsModel ai.djl.engine.rust.RsNDArray ai.djl.engine.rust.RsNDArrayEx ai.djl.engine.rust.RsNDArrayIndexer ai.djl.engine.rust.RsNDManager ai.djl.engine.rust.RsSymbolBlock ai.djl.engine.rust.RustLibrary ai.djl.engine.rust.zoo.RsModelZoo ai.djl.engine.rust.zoo.RsZooProvider ai.djl.huggingface.tokenizers.Encoding ai.djl.huggingface.tokenizers.HuggingFaceTokenizer ai.djl.huggingface.tokenizers.HuggingFaceTokenizer.Builder ai.djl.hu
内容概要:本文探讨了电动汽车(EV)对IEEE 33节点电网的影响,特别是汽车负荷预测与节点潮流网损、压损计算。通过蒙特卡洛算法模拟电动汽车负荷的时空特性,研究了四种不同场景下电动汽车接入电网的影响。具体包括:负荷接入前后的网损与电压计算、不同节点接入时的变化、不同时段充电的影响以及不同负荷大小对电网的影响。通过这些分析,揭示了电动汽车充电行为对电网的具体影响机制,为未来的电网规划和优化提供了重要参考。 适合人群:从事电力系统研究的专业人士、电网规划工程师、电动汽车行业从业者、能源政策制定者。 使用场景及目标:①评估电动汽车大规模接入对现有电网基础设施的压力;②优化电动汽车充电设施的布局和运营策略;③为相关政策和技术标准的制定提供科学依据。 其他说明:文中提供的Python代码片段用于辅助理解和验证理论分析,实际应用中需要更复杂的模型和详细的电网参数。
房地产 -【万科经典-第五园】第五园产品推介会.ppt
稳压器件.SchLib
1
模拟符号.SCHLIB
内容概要:本文详细介绍了如何在Simulink中构建并仿真三相电压型逆变器的SPWM调制和电压单闭环控制系统。首先,搭建了由六个IGBT组成的三相全桥逆变电路,并设置了LC滤波器和1000V直流电源。接着,利用PWM Generator模块生成SPWM波形,设置载波频率为2kHz,调制波为50Hz工频正弦波。为了实现精确的电压控制,采用了abc/dq变换将三相电压信号转换到旋转坐标系,并通过锁相环(PLL)进行同步角度跟踪。电压闭环控制使用了带有抗饱和处理的PI调节器,确保输出电压稳定。此外,文中还讨论了标幺值处理方法及其优势,以及如何通过FFT分析验证输出波形的质量。 适用人群:电力电子工程师、自动化控制专业学生、从事逆变器研究的技术人员。 使用场景及目标:适用于希望深入了解三相电压型逆变器控制原理和技术实现的研究人员和工程师。主要目标是掌握SPWM调制技术和电压单闭环控制的设计与调试方法,提高系统的稳定性和效率。 其他说明:文中提供了详细的建模步骤和参数设置指南,帮助读者快速上手并在实践中不断优化模型性能。同时,强调了一些常见的调试技巧和注意事项,如载波频率的选择、积分器防饱和处理等。
【蓝桥杯EDA】客观题解析
房地产 -物业 苏州设备房管理标准.ppt
3
房地产 -2024H1房地产市场总结与展望(新房篇).docx
内容概要:本文详细介绍了利用LabVIEW与PLC进行自动化数据交互的技术方案,涵盖参数管理、TCP通信、串口扫描、数据转移等方面。首先,通过配置文件(INI)实现参数的自动加载与保存,确保参数修改不影响程序运行。其次,在TCP通信方面采用异步模式和心跳包设计,增强通信稳定性,并加入CRC16校验避免数据丢失。对于串口扫描,则通过VISA配置实现状态触发,确保进出站检测的准确性。最后,针对不同类型的数据转移提出具体方法,如TDMS文件存储策略,确保高效可靠的数据处理。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是熟悉LabVIEW和PLC编程的从业者。 使用场景及目标:适用于需要将LabVIEW作为上位机与PLC进行数据交互的工业生产线环境,旨在提高系统的自动化程度、稳定性和易维护性。 其他说明:文中提供了多个实用代码片段和注意事项,帮助读者更好地理解和应用相关技术。
d65689da7ed20e21882a634f8f5ce6c9_faad2735d293907fb32f7c5837f7302a