最近在网上又看到有关于Hadoop适用性的讨论[1]。想想今年大数据技术开始由互联网巨头走向中小互联网和传统行业,估计不少人都在考虑各种“纷繁复杂”的大数据技术的适用性的问题。这儿我就结合我这几年在Hadoop等大数据方向的工作经验,与大家讨论一下Hadoop、Spark、HBase及Redis等几个主流大数据技术的使用场景(首先声明一点,本文中所指的Hadoop,是很“狭义”的Hadoop,即在HDFS上直接跑MapReduce的技术,下同)。
我这几年实际研究和使用过大数据(包含NoSQL)技术包括Hadoop、Spark、HBase、Redis和MongoDB等,这些技术的共同特点是不适合用于支撑事务型应用,特别是与“钱”相关的应用,如“订购关系”、“超市交易”等,这些场合到目前为止还是Oracle等传统关系型数据库的天下。
1. Hadoop Vs. Spark
Hadoop/MapReduce和Spark最适合的都是做离线型的数据分析,但Hadoop特别适合是单次分析的数据量“很大”的情景,而Spark则适用于数据量不是很大的情景。这儿所说的“很大”,是相对于整个集群中的内存容量而言的,因为Spark是需要将数据HOLD在内存中的。一般的,1TB以下的数据量都不能算很大,而10TB以上的数据量都是算“很大”的。比如说,20个节点的一个集群(这样的集群规模在大数据领域算是很小的了),每个节点64GB内存(不算很小,但也不能算大),共计1.28TB。让这样规模的一个集群把500GB左右的数据HOLD在内存中还是很轻松的。这时候,用Spark的执行速度都会比Hadoop快,毕竟在MapReduce过程中,诸如spill等这些操作都是需要写磁盘的。
这儿有2点需要提一下:1)一般情况下,对于中小互联网和企业级的大数据应用而言,单次分析的数量都不会“很大”,因此可以优先考虑使用Spark,特别是当Spark成熟了以后(Hadoop已经出到2.5了,而Spark才刚出1.0呢)。比如说,中国移动的一个省公司(在企业级,移动公司的数据量还是算相当大的),他们单次分析的数量一般也就几百GB,连1TB都很少超过,更不用说超过10TB了,所以完全可以考虑用Spark逐步替代Hadoop。2)业务通常认为Spark更适用于机器学习之类的“迭代式”应用,但这仅仅是“更”。一般地,对于中等规模的数据量,即便是不属于“更适合”范畴的应用,Spark也能快2~5倍左右。我自己做过一个对比测试,80GB的压缩数据(解压后超过200GB),10个节点的集群规模,跑类似“sum+group-by”的应用,MapReduce花了5分钟,而spark只需要2分钟。
2. HBase
对于HBase,经常听到的一个说法是:HBase只适合于支撑离线分析型应用,特别是做为MapReduce任务的后台数据源。持这个观点不少,甚至在国内一个响当当的电信设备提供商中,HBase也是被归入数据分析产品线的,并明确不建议将HBase用于在线应用。可实际情况真是这样吗?让我们先看看它的几大案例:Facebook的消息类应用,包括Messages、Chats、Emails和SMS系统,用的都是HBase;淘宝的WEB版阿里旺旺,后台是HBase;小米的米聊用的也是HBase;移动某省公司的手机详单查询系统,去年也由原先的Oracle改成了一个32节点的HBase集群——兄弟们,这些可都是知名大公司的关键应用啊,够能说明问题了吧。
实际上从HBase的技术特点上看,它特别适用于简单数据写入(如“消息类”应用)和海量、结构简单数据的查询(如“详单类”应用)。在上面提到的4个HBase的应用中,Facebook消息、WEB版阿里旺旺、米聊等均属于以数据写入为主的消息类应用,而移动公司的手机详单查询系统则属于以数据查询为主的详单类应用。
HBase的另一个用途是作为MapReduce的后台数据源,以支撑离线分析型应用。这个固然可以,但其性能如何则是值得商榷的。比如说,superlxw1234同学通过实验对比了“Hive over HBase”和“Hive over HDFS”后惊奇的发现[2],除了在使用rowkey过滤时,基于HBase的性能上略好于直接基于HDFS外,在使用全表扫描和根据value过滤时,直接基于HDFS方案的性能均比HBase好的多——这真是一个谬论啊!不过对于这个问题,我个人感觉从原理上看,当使用rowkey过滤时,过滤程度越高,基于HBase方案的性能必然越好;而直接基于HDFS方案的性能则跟过滤程度没有关系。
3. HBase Vs. Redis
HBase和Redis在功能上比较类似,比如它们都属于NoSQL级别的数据库,都支持数据分片等,关键的不同点实际上只有一个:对HBase而言,一旦数据被成功写入,从原理上看是不会丢的,因为它有Writa-ahead Log(功能上类似于Oracle REDO);而对于Redis而言,即便是配置了主从复制功能,在Failover时完全存在发生数据丢失的可能(如果不配置主从复制,那么丢失的数据会更多),因为它第一没有类似REDO的重做日志,第二采用了异步复制的方式。
关键还在于性能。通常,Redis的读写性能在100,000 ops/s左右,时延一般为10~70微妙左右[4][5];而HBase的单机读写性能一般不会超过1,000ops/s,时延则在1~5毫秒之间[3]。忽略其中的硬件因素,100倍的读写性能差异已经足够说明问题了。顺便提一下的是,Redis在Tuning上还是比较讲究的,比如说,当使用numactl(或taskset)将Redis进程绑定到同一个CPU的不同CORE上时,它的性能一般可以提升30%左右[6],在一些特别的场景下甚至可以有近一倍的提升。
从上述的功能和性能比较上,我们就很容易的总结出HBase和Redis各自的适用范畴:
1)当用来支撑简单“消息类”应用时,如果数据失败是不能容忍的,那就用只能用HBase;如果需要一个高性能的环境,而且能够容忍一定的数据丢失,那完全可以考虑使用Redis。
2)Redis很适合用来做缓存,但除此之外,它实际上还可以在一些“读写分离”的场景下作为“读库”来用,特别是用来存放Hadoop或Spark的分析结果。
有不少人认为Redis只适合用作“缓存”,根据我的理解,这主要是基于以下2个原因:第一,Redis在设计上存在数据丢失的可能性;第二,当无法将数据全部HOLD在内存中时,其读写性能会急剧下降到每秒几百ops[6],这一现象类似于Google开源的Leveldb[7],Facebook的RocksDB团队的通过Performance Benchmark也证实了这一现象的存在[8]。但是,当用作“读库”或用于支撑允许数据丢失的“消息类”应用时,这两个问题实际上都没有关系。
[1] Hadoop虽然强大,但不是万能的。http://database.51cto.com/art/201402/429789.htm
[2] Hiveover HBase和Hive over HDFS性能比较分析。http://superlxw1234.iteye.com/blog/2008274
[3] Hbase性能测试。http://www.cnblogs.com/colorfulkoala/archive/2013/05/13/3076139.html
[4] 互联网利器Redis内存数据库性能评测。http://tech.it168.com/a2012/1011/1406/000001406978_all.shtml
[5] Howfast is Redis?http://redis.io/topics/benchmarks
[6] Redis千万级的数据量的性能测试。http://www.cnblogs.com/lovecindywang/archive/2011/03/03/1969633.html
[7] Leveldb.https://code.google.com/p/leveldb/
[8] RocksDBbenchmark results.https://github.com/facebook/rocksdb/wiki/Performance-Benchmarks
http://www.kuqin.com/shuoit/20140809/341560.html
相关推荐
项目包含完整前后端源码和数据库文件 环境说明: 开发语言:Java 框架:ssm,mybatis JDK版本:JDK1.8 数据库:mysql 5.7 数据库工具:Navicat11 开发软件:eclipse/idea Maven包:Maven3.3 服务器:tomcat7
YOLO系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中,文件名末尾是部分类别名称; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值; 【注】可以下拉页面,在资源详情处查看标签具体内容;
1、嵌入式物联网单片机项目开发例程,简单、方便、好用,节省开发时间。 2、代码使用IAR软件开发,当前在CC2530上运行,如果是其他型号芯片,请自行移植。 3、软件下载时,请注意接上硬件,并确认烧录器连接正常。 4、有偿指导v:wulianjishu666; 5、如果接入其他传感器,请查看账号发布的其他资料。 6、单片机与模块的接线,在代码当中均有定义,请自行对照。 7、若硬件有差异,请根据自身情况调整代码,程序仅供参考学习。 8、代码有注释说明,请耐心阅读。 9、例程具有一定专业性,非专业人士请谨慎操作。
手语图像分类数据集【已标注,约2,500张数据】 分类个数【36】:0、1、a、b等【具体查看json文件】 划分了训练集、测试集。存放各自的同一类数据图片。如果想可视化数据集,可以运行资源中的show脚本。 CNN分类网络改进:https://blog.csdn.net/qq_44886601/category_12858320.html 【更多图像分类、图像分割(医学)、目标检测(yolo)的项目以及相应网络的改进,可以参考本人主页:https://blog.csdn.net/qq_44886601/category_12803200.html】
CNCAP 2024打分表
系统可以提供信息显示和相应服务,其管理智慧校园管理系统信息,查看智慧校园管理系统信息,管理智慧校园管理系统。 项目包含完整前后端源码和数据库文件 环境说明: 开发语言:Java JDK版本:JDK1.8 数据库:mysql 5.7 数据库工具:Navicat11 开发软件:eclipse/idea Maven包:Maven3.3 部署容器:tomcat7 小程序开发工具:hbuildx/微信开发者工具
Matlab领域上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
影音互动科普网站功能描述 影音互动科普网站旨在通过多媒体形式(视频、音频、互动内容等)传播科学知识,提高公众的科学素养。该网站结合娱乐与教育,提供易于理解的科普内容,吸引不同年龄层次的用户参与和学习。以下是该网站的主要功能描述: 1. 用户注册与登录 用户注册:用户可以通过电子邮箱、手机号或社交账号(如微信、微博等)注册,提供基本信息并设置密码。 用户登录:支持通过注册的账号登录,保障个人信息的安全性,并提供自动登录功能。 2. 科普视频与音频库 视频内容:网站提供各类科普视频,包括短视频、纪录片、讲座、实验演示等,覆盖物理、化学、生物、地理、天文等多个领域。 音频内容:提供科普音频节目,如科普广播、播客、专题讲座等,便于用户在日常生活中进行学习。 视频分类:按科目、难度、年龄层、时长等维度对视频和音频进行分类,帮助用户更精准地找到感兴趣的内容。 字幕与多语言支持:提供字幕、翻译和多语种版本,帮助不同语言的用户学习。 3. 互动问答与讨论区 专家问答:用户可以向科普专家提问,专家提供详尽的解答,解决用户的科学疑惑。 社区讨论:用户可以在视频下方或专题页面中发表评论、提问或与其他用户
倪海厦讲义及笔记,易学数据测算
内容概要:本文档是《组合数学答案-网络流传版.pdf》的内容,主要包含了排列组合的基础知识以及一些经典的组合数学题目。这些题目涵盖了从排列数计算、二项式定理的应用到容斥原理的实际应用等方面。通过对这些题目的解析,帮助读者加深对组合数学概念和技巧的理解。 适用人群:适合初学者和有一定基础的学习者。 使用场景及目标:可以在学习组合数学课程时作为练习题参考,也可以在复习考试或准备竞赛时使用,目的是提高解决组合数学问题的能力。 其他说明:文档中的题目覆盖了组合数学的基本知识点,适合逐步深入学习。每个题目都有详细的解答步骤,有助于读者掌握解题思路和方法。
内容概要:本文是一篇完整的管理系统开发指南,详细介绍了功能要求、技术栈选择、数据库设计、用户界面搭建以及安全控制等方面的内容。功能要求包括用户管理、权限控制、数据管理、系统日志、通知与消息、统计分析和扩展模块。使用的技术栈涵盖了后端(Java、Python、C#等)和前端(React、Vue.js、Angular等)技术,以及数据库设计和安全控制措施。 适合人群:具备一定开发经验的软件工程师和技术管理人员。 使用场景及目标:适用于企业级管理系统开发项目,旨在构建一个高效、安全且易于扩展的系统。开发者可以参考本文档进行系统的设计和实现,确保系统满足业务需求。 其他说明:本文档提供了详细的步骤和最佳实践,帮助开发者更好地理解和应用管理系统开发的各种技术。通过结合实际案例和实践经验,本文档能够为开发者提供有价值的指导。
听器听力损伤程度分级表.docx
MATLAB代码:基于条件风险价值的合作型Stackerlberg博弈微网动态定价与优化调度 关键词:微网优化调度 条件风险价值 合作博弈 纳什谈判 参考文档:《A cooperative Stackelberg game based energy management considering price discrimination and risk assessment》完美复现 仿真平台:MATLAB yalmip+cplex+mosek 主要内容:代码主要做的是一个基于合作型Stackerlberg博弈的考虑差别定价和风险管理的微网动态定价与调度策略,提出了一个双层能源管理框架,实现多个微网间的P2P能源交易,上层为零商的动态定价模型,目标是社会福利最大化;下层是多个产消者的合作博弈模型,优化各产消者的能量管理策略。 同时,采用纳什谈判法对多个产消者的合作剩余进行公平分配,还考虑了运行风险,采用条件风险价值(CVaR)随机规划方法来描述零商的预期损失。 求解方面,双层模型被基于KKT条件转为单层模型,模型可以高效求解。 这段代码是一个基于合作型Stackelberg博弈的微网
YOLO系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中,文件名末尾是部分类别名称; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值; 【注】可以下拉页面,在资源详情处查看标签具体内容;
20块钱买的【动漫网页设计】源码,免费分享出来啦,如果要积分那是系统自动涨的啦。 内容概要:本资源是一份动漫网页设计的源码,价格仅为20元,作者将其免费分享给大家。该源码包含了动漫元素的设计,包括背景、图标、按钮等,同时也提供了一些常见的网页布局和交互效果。通过该资源,可以学习到动漫网页设计的基本原理和技巧。 适用人群:本资源适用于对动漫网页设计感兴趣的人群,包括网页设计师、UI设计师、前端开发工程师等。同时,对于想要学习动漫网页设计的初学者也非常适用。 使用场景及目标:该资源可以用于学习和实践动漫网页设计的技巧和原理。通过学习该源码,可以了解到动漫网页设计的基本要素和设计思路,同时也可以借鉴其中的设计元素和交互效果,应用到自己的网页设计中。 其他说明:本资源是作者自己设计的,经过了多次修改和优化,具有一定的参考价值。同时,作者也将其价格设置的非常低,希望更多的人可以学习到动漫网页设计的技巧和方法。如果您对该资源有任何疑问或建议,欢迎在评论区留言,作者会尽快回复。。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
自考 本科 C++程序设计-课本 参考答案
每周质量安全排查报告.docx
YOLO算法-杂草检测项目数据集-3970张图像带标签-杂草.zip
内存搜索工具(易).rar
AI大模型研究相关报告