`
tjukk
  • 浏览: 45875 次
  • 性别: Icon_minigender_1
  • 来自: 天津
社区版块
存档分类
最新评论

数据结构:红黑树

 
阅读更多

 

推荐阅读Left-Leaning Red-Black TreesDagstuhl Workshop on Data Structures, Wadern, Germany, February, 2008. 

直接下载http://www.cs.princeton.edu/~rs/talks/LLRB/RedBlack.pdf

------------------------------
红黑树系列,六篇文章于今日已经完成:

1、教你透彻了解红黑树2、红黑树算法的实现与剖析3、红黑树的c源码实现与剖析4、一步一图一代码,R-B Tree5、红黑树插入和删除结点的全程演示6、红黑树的c++完整实现源码

------------------------------

 

一、红黑树的介绍

先来看下算法导论对R-B Tree的介绍:
红黑树,一种二叉查找树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。
通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其
他路径长出俩倍,因而是接近平衡的。

 

前面说了,红黑树,是一种二叉查找树,既然是二叉查找树,那么它必满足二叉查找树的一般性质。
下面,在具体介绍红黑树之前,咱们先来了解下 二叉查找树的一般性质:
1.在一棵二叉查找树上,执行查找、插入、删除等操作,的时间复杂度为O(lgn)。
    因为,一棵由n个结点,随机构造的二叉查找树的高度为lgn,所以顺理成章,一般操作的执行时间为O(lgn)。
    //至于n个结点的二叉树高度为lgn的证明,可参考算法导论 第12章 二叉查找树 第12.4节。
2.但若是一棵具有n个结点的线性链,则此些操作最坏情况运行时间为O(n)。

 

红黑树,能保证在最坏情况下,基本的动态几何操作的时间均为O(lgn)。

ok,我们知道,红黑树上每个结点内含五个域,color,key,left,right,p。如果相应的指针域没有,则设为NIL。

一般的,红黑树,满足以下性质,即只有满足以下全部性质的树,我们才称之为红黑树:

1)每个结点要么是红的,要么是黑的。
2)根结点是黑的。
3)每个叶结点,即空结点(NIL)是黑的。
4)如果一个结点是红的,那么它的俩个儿子都是黑的。
5)对每个结点,从该结点到其子孙结点的所有路径上包含相同数目的黑结点。

 

下图所示,即是一颗红黑树:

此图忽略了叶子和根部的父结点。

 

二、树的旋转知识

 

当我们在对红黑树进行插入和删除等操作时,对树做了修改,那么可能会违背红黑树的性质。

 

为了保持红黑树的性质,我们可以通过对树进行旋转,即修改树种某些结点的颜色及指针结构,以达到对红黑树进行

插入、删除结点等操作时,红黑树依然能保持它特有的性质(如上文所述的,五点性质)。

 

树的旋转,分为左旋和右旋,以下借助图来做形象的解释和介绍:

1.左旋

如上图所示:

当在某个结点pivot上,做左旋操作时,我们假设它的右孩子y不是NIL[T],pivot可以为树内任意右孩子而不是NIL[T]的结点。

左旋以pivot到y之间的链为“支轴”进行,它使y成为该孩子树新的根,而y的左孩子b则成为pivot的右孩子。

来看算法导论对此操作的算法实现(以x代替上述的pivot):

 LEFT-ROTATE(Tx)
1  y  right[x Set y.
2  right[x left[y]       Turn y's left subtree into x's right subtree.

3  p[left[y]]  x
4  p[y p[x]              Link x's parent to y.
5  if p[x] = nil[T]
6     then root[T y
7     else if x = left[p[x]]
8             then left[p[x]]  y
9             else right[p[x]]  y
10  left[y x              Put x on y's left.
11  p[x y

 

 

2.右旋

右旋与左旋差不多,再此不做详细介绍。

 

对于树的旋转,能保持不变的只有原树的搜索性质,而原树的红黑性质则不能保持,

在红黑树的数据插入和删除后可利用旋转和颜色重涂来恢复树的红黑性质。

 

至于有些书如 STL源码剖析有对双旋的描述,其实双旋只是单旋的两次应用,并无新的内容,

因此这里就不再介绍了,而且左右旋也是相互对称的,只要理解其中一种旋转就可以了。

 

三、红黑树插入、删除操作的具体实现

   三、I、ok,接下来,咱们来具体了解红黑树的插入操作。
向一棵含有n个结点的红黑树插入一个新结点的操作可以在O(lgn)时间内完成。

算法导论:
RB-INSERT(T, z)
 1  y ← nil[T]
 2  x ← root[T]
 3  while x ≠ nil[T]
 4      do y ← x
 5         if key[z] < key[x]
 6            then x ← left[x]
 7            else x ← right[x]
 8  p[z] ← y
 9  if y = nil[T]
10     then root[T] ← z
11     else if key[z] < key[y]
12             then left[y] ← z
13             else right[y] ← z
14  left[z] ← nil[T]
15  right[z] ← nil[T]
16  color[z] ← RED
17  RB-INSERT-FIXUP(T, z)

咱们来具体分析下,此段代码:
RB-INSERT(T, z),将z插入红黑树T 之内。

为保证红黑性质在插入操作后依然保持,上述代码调用了一个辅助程序RB-INSERT-FIXUP
来对结点进行重新着色,并旋转。

14  left[z] ← nil[T]
15  right[z] ← nil[T]  //保持正确的树结构
第16行,将z着为红色,由于将z着为红色可能会违背某一条红黑树的性质,
所以,在第17行,调用RB-INSERT-FIXUP(T,z)来保持红黑树的性质。

RB-INSERT-FIXUP(T, z),如下所示:
 1 while color[p[z]] = RED
 2     do if p[z] = left[p[p[z]]]
 3           then y ← right[p[p[z]]]
 4                if color[y] = RED
 5                   then color[p[z]] ← BLACK                    ▹ Case 1
 6                        color[y] ← BLACK                       ▹ Case 1
 7                        color[p[p[z]]] ← RED                   ▹ Case 1
 8                        z ← p[p[z]]                            ▹ Case 1
 9                   else if z = right[p[z]]
10                           then z ← p[z]                       ▹ Case 2
11                                LEFT-ROTATE(T, z)              ▹ Case 2
12                           color[p[z]] ← BLACK                 ▹ Case 3
13                           color[p[p[z]]] ← RED                ▹ Case 3
14                           RIGHT-ROTATE(T, p[p[z]])            ▹ Case 3
15           else (same as then clause
                         with "right" and "left" exchanged)
16 color[root[T]] ← BLACK

 
ok,参考一网友的言论,用自己的语言,再来具体解剖下上述俩段代码。
为了保证阐述清晰,我再写下红黑树的5个性质:

1)每个结点要么是红的,要么是黑的。
2)根结点是黑的。
3)每个叶结点,即空结点(NIL)是黑的。
4)如果一个结点是红的,那么它的俩个儿子都是黑的。
5)对每个结点,从该结点到其子孙结点的所有路径上包含相同数目的黑结点。

 

 

在对红黑树进行插入操作时,我们一般总是插入红色的结点,因为这样可以在插入过程中尽量避免对树的调整。
那么,我们插入一个结点后,可能会使原树的哪些性质改变列?
由于,我们是按照二叉树的方式进行插入,因此元素的搜索性质不会改变。

如果插入的结点是根结点,性质2会被破坏,如果插入结点的父结点是红色,则会破坏性质4。
因此,总而言之,插入一个红色结点只会破坏性质2或性质4。
我们的回复策略很简单,
其一、把出现违背红黑树性质的结点向上移,如果能移到根结点,那么很容易就能通过直接修改根结点来恢复红黑树的性质。直接通过修改根结点来恢复红黑树应满足的性质。
其二、穷举所有的可能性,之后把能归于同一类方法处理的归为同一类,不能直接处理的化归到下面的几种情况,

 

 //注:以下情况3、4、5与上述算法导论上的代码RB-INSERT-FIXUP(T, z),相对应:

 

情况1:插入的是根结点。
原树是空树,此情况只会违反性质2。
  对策:直接把此结点涂为黑色。
情况2:插入的结点的父结点是黑色。
此不会违反性质2和性质4,红黑树没有被破坏。
  对策:什么也不做。
情况3:当前结点的父结点是红色且祖父结点的另一个子结点(叔叔结点)是红色。
此时父结点的父结点一定存在,否则插入前就已不是红黑树。
与此同时,又分为父结点是祖父结点的左子还是右子,对于对称性,我们只要解开一个方向就可以了。

在此,我们只考虑父结点为祖父左子的情况。
同时,还可以分为当前结点是其父结点的左子还是右子,但是处理方式是一样的。我们将此归为同一类。
  对策:将当前节点的父节点和叔叔节点涂黑,祖父结点涂红,把当前结点指向祖父节点,从新的当前节点重新开始算法。

针对情况3,变化前(图片来源:saturnman)[插入4节点]:

变化后:

情况4:当前节点的父节点是红色,叔叔节点是黑色,当前节点是其父节点的右子

对策:当前节点的父节点做为新的当前节点,以新当前节点为支点左旋。

如下图所示,变化前[插入7节点]:

 

变化后:

 

 

情况5:当前节点的父节点是红色,叔叔节点是黑色,当前节点是其父节点的左子

解法:父节点变为黑色,祖父节点变为红色,在祖父节点为支点右旋

如下图所示[插入2节点]

变化后:

 

 

==================

   三、II、ok,接下来,咱们最后来了解,红黑树的删除操作:

算法导论一书,给的算法实现: 

RB-DELETE(T, z)   单纯删除结点的总操作
 1 if left[z] = nil[T] or right[z] = nil[T]
 2    then y ← z
 3    else y ← TREE-SUCCESSOR(z)
 4 if left[y] ≠ nil[T]
 5    then x ← left[y]
 6    else x ← right[y]
 7 p[x] ← p[y]
 8 if p[y] = nil[T]
 9    then root[T] ← x
10    else if y = left[p[y]]
11            then left[p[y]] ← x
12            else right[p[y]] ← x
13 if y 3≠ z
14    then key[z] ← key[y]
15         copy y's satellite data into z
16 if color[y] = BLACK
17    then RB-DELETE-FIXUP(T, x)
18 return y

 

RB-DELETE-FIXUP(T, x)   恢复与保持红黑性质的工作
 1 while x ≠ root[T] and color[x] = BLACK
 2     do if x = left[p[x]]
 3           then w ← right[p[x]]
 4                if color[w] = RED
 5                   then color[w] ← BLACK                        ▹  Case 1
 6                        color[p[x]] ← RED                       ▹  Case 1
 7                        LEFT-ROTATE(T, p[x])                    ▹  Case 1
 8                        w ← right[p[x]]                         ▹  Case 1
 9                if color[left[w]] = BLACK and color[right[w]] = BLACK
10                   then color[w] ← RED                          ▹  Case 2
11                        x p[x]                                  ▹  Case 2
12                   else if color[right[w]] = BLACK
13                           then color[left[w]] ← BLACK          ▹  Case 3
14                                color[w] ← RED                  ▹  Case 3
15                                RIGHT-ROTATE(T, w)              ▹  Case 3
16                                w ← right[p[x]]                 ▹  Case 3
17                         color[w] ← color[p[x]]                 ▹  Case 4
18                         color[p[x]] ← BLACK                    ▹  Case 4
19                         color[right[w]] ← BLACK                ▹  Case 4
20                         LEFT-ROTATE(T, p[x])                   ▹  Case 4
21                         x ← root[T]                            ▹  Case 4
22        else (same as then clause with "right" and "left" exchanged)
23 color[x] ← BLACK

 

为了保证以下的介绍与阐述清晰,我第三次重写下红黑树的5个性质

1)每个结点要么是红的,要么是黑的。
2)根结点是黑的。
3)每个叶结点,即空结点(NIL)是黑的。
4)如果一个结点是红的,那么它的俩个儿子都是黑的。
5)对每个结点,从该结点到其子孙结点的所有路径上包含相同数目的黑结点。

(相信,重述了3次,你应该有深刻记忆了。:D)

 

 saturnman:
红黑树删除的几种情况:

-------------------------------------------------
博主提醒:
以下所有的操作,是针对红黑树已经删除结点之后,
为了恢复和保持红黑树原有的5点性质,所做的恢复工作。

前面,我已经说了,因为插入、或删除结点后,
可能会违背、或破坏红黑树的原有的性质,
所以为了使插入、或删除结点后的树依然维持为一棵新的红黑树,
那就要做俩方面的工作:
1、部分结点颜色,重新着色
2、调整部分指针的指向,即左旋、右旋。

而下面所有的文字,则是针对红黑树删除结点后,所做的修复红黑树性质的工作。

 二零一一年一月七日更新
------------------------------------------------------------

(注:以下的情况3、4、5、6,与上述算法导论之代码RB-DELETE-FIXUP(T, x) 恢复与保持
中case1,case2,case3,case4相对应。)
情况1:当前节点是红色
    解法,直接把当前节点染成黑色,结束。
    此时红黑树性质全部恢复。
情况2:当前节点是黑色且是根节点
    解法:什么都不做,结束

情况3:当前节点是黑色,且兄弟节点为红色(此时父节点和兄弟节点的子节点分为黑)。
    解法:把父节点染成红色,把兄弟结点染成黑色,之后重新进入算法(我们只讨论当前节点是其父节点左孩子时的情况)。
    然后,针对父节点做一次左旋。此变换后原红黑树性质5不变,而把问题转化为兄弟节点为黑色的情况。

                     3.变化前:

 

                     3.变化后: 

 

情况4:当前节点是黑色,且兄弟是黑色,且兄弟节点的两个子节点全为黑色。
      解法:把当前节点和兄弟节点中抽取一重黑色追加到父节点上,把父节点当成新的当前节点,重新进入算法。(此变换后性质5不变)

 

                        4.变化前

 

                        4.变化后

 

情况5:当前节点颜色是黑色,兄弟节点是黑色,兄弟的左子是红色,右子是黑色。
    解法:把兄弟结点染红,兄弟左子节点染黑,之后再在兄弟节点为支点解右旋,
之后重新进入算法。此是把当前的情况转化为情况6,而性质5得以保持。

              5.变化前:

 

                  5.变化后:

 

 

 

情况6:当前节点颜色是黑色,它的兄弟节点是黑色,但是兄弟节点的右子是红色,兄弟节点左子的颜色任意。

    解法:把兄弟节点染成当前节点父节点的颜色,把当前节点父节点染成黑色,兄弟节点右子染成黑色,

之后以当前节点的父节点为支点进行左旋,此时算法结束,红黑树所有性质调整正确。

                    6.变化前:

 

              6.变化后:

 

 

 

限于篇幅,不再过多赘述。更多,可参考算法导论或下文我写的第二篇文章。

完。

July、二零一零年十二月二十九日初稿。三十日凌晨修订。行文3个小时以上。

----------------

 

 

今下午画红黑树画了好几个钟头,贴俩张图:

  红黑树插入的3种情况:

 

  红黑树删除的4种情况:

 

ok,只贴俩张,更多,参考我写的关于红黑树的第二篇文章:

红黑树算法的层层剖析与逐步实现[推荐]
http://blog.csdn.net/v_JULY_v/archive/2010/12/31/6109153.aspx

这篇文章针对算法实现源码分十层,层层、逐层剖析,相信,更清晰易懂。

或者,saturnman的这篇文章: http://saturnman.blog.163.com/blog/static/5576112010969420383/

             July、二零一零年十二月三十一日、最后更新。

分享到:
评论

相关推荐

    红黑树-数据结构

    红黑树广泛应用于各种数据结构和算法中,例如标准模板库(STL)中的`std::map`和`std::set`就是基于红黑树实现的,它们提供了一种高效、有序的键值对存储方式。此外,数据库索引、虚拟内存管理、编译器符号表等也都...

    东南大学计算机系 高级数据结构实验 红黑树2

    红黑树是计算机科学中的一个重要概念,尤其在数据结构的学习和应用中占据核心地位。作为东南大学计算机系高级数据结构实验的一部分,红黑树的深入探究对于学生掌握复杂数据结构和算法具有重要意义。本文将详细介绍...

    数据结构—红黑树

    数据结构—红黑树 红黑树是一种自平衡二叉查找树,它的每个结点都遵守着某些特性,红黑树的出现是为了解决二叉查找树的缺陷,即在插入和删除操作时可能会出现最坏情况的运行时间为O(N),红黑树通过引入一些平衡条件...

    深入理解高级数据结构之红黑树

    它的设计思想也被用于其他数据结构,如B树和B+树,这些都是构建高性能、高并发系统的关键组件。 总的来说,红黑树是为了解决普通二叉查找树在动态操作下性能退化的问题而诞生的,通过近似的平衡特性,它能够在保证...

    数据结构-红黑树

    数据结构,红黑树的实现代码,可以直接编译运行,独立完成

    数据结构课程设计红黑树源码

    总的来说,这个数据结构课程设计的红黑树源码是学习数据结构和算法的好材料,特别是对于C++和MFC使用者,它展示了如何将抽象的数据结构与实际编程结合,提供了实用的图形化界面展示,有助于初学者理解和掌握红黑树这...

    红黑树在Linux虚拟内存区域管理中的应用.pdf

    红黑树在Linux虚拟内存区域管理中的应用非常广泛和重要,高效操作、自平衡和可扩展性使得红黑树成为Linux内核中的一种重要数据结构。 另外,红黑树在其他领域的应用也很广泛,例如: 1. 数据库:红黑树可以用于...

    东南大学计算机系 高级数据结构实验 红黑树

    红黑树是一种自平衡二叉查找树(Self...rbtree文件可能包含了实验的源代码和相关报告,这对于理解和掌握红黑树这一高级数据结构非常有帮助。通过这样的实践,学生不仅可以提升编程能力,还能加深对数据结构理论的理解。

    数据结构——红黑树

    ### 数据结构——红黑树 #### 一、红黑树简介 红黑树是一种自平衡二叉查找树,它的每个节点都包含一个颜色属性(红色或黑色),并且满足以下五条性质,这些性质保证了红黑树的大致平衡,使得在最坏情况下,树的高度...

    数据结构红黑树详解

    理解红黑树有助于深入理解数据结构和算法,提升编程能力,特别是在处理大量数据的排序、查找等场景,能够编写出高效且稳定的代码。 7. **应用拓展**: 红黑树的原理也可以应用于其他自平衡二叉树,例如B树、B+树...

    高级数据结构代码 红黑树 二叉树 B树

    本资源包含关于三种高级数据结构的代码实现:红黑树、二叉树和B树。这些数据结构在实际编程中有着广泛的应用,尤其在算法设计、数据库系统、内存管理等领域。 首先,我们来看二叉树,它是数据结构中最基础也是最...

    红黑树数据结构剖析

    红黑树数据结构剖析

    红黑树的源码与测试函数

    4. **myrbtree.h**:红黑树的头文件,定义了红黑树的数据结构和对外公开的接口,供其他模块调用。这些接口可能包括创建树、插入节点、删除节点、查找节点、遍历树等操作。 5. **mymempool.h**:内存池的头文件,...

    数据结构相关面试题:关于红黑树内容的相关介绍

    数据结构相关面试题:关于红黑树内容的相关介绍。红黑树是 1972 年发明的,称为对称二叉 B 树,1978 年正式命名红黑树。主要特征是在每个节点上增加一个属性表示节点颜色,可以红色或黑色。红黑树和 AVL 树类似,都...

    科大算法实验2红黑树和二叉查找树

    本实验主要探讨了两种经典的数据结构:红黑树(Red-Black Tree)和二叉查找树(Binary Search Tree,BST),这些都是科大算法实验2的重点内容。 二叉查找树是一种特殊的二叉树,其每个节点都包含一个键、一个关联值...

    红黑树-动态演示生成红黑树

    总结来说,红黑树是一种重要的数据结构,它的动态演示是理解和掌握其工作原理的有效工具。通过随机数字的插入,我们可以直观地看到红黑树如何维持其平衡特性,这有助于提升我们在算法和数据结构方面的知识。

    红黑树完整实现文件

    红黑树是一种自平衡二叉查找树,由Rudolf Bayer在1972年提出。它的设计目标是在保持二叉查找树基本属性的同时,通过引入颜色(红色或黑色...理解和掌握红黑树的实现对于学习数据结构和算法、提升编程技能具有重要意义。

    红黑树实现源码

    红黑树(Red-Black Tree)是一种自平衡二叉查找树,它在计算机科学中扮演着重要的角色,尤其是在数据结构和算法领域。红黑树的名字来源于它的节点颜色属性:红色或黑色。这种颜色属性被用来确保树的某些关键性质,...

    红黑树插入代码(严蔚敏数据结构)

    严蔚敏《数据结构》红黑树插入的实现C代码

    Java实现的红黑树

    红黑树(Red-Black Tree)是一...总的来说,红黑树是一种重要的数据结构,它的平衡策略使其在各种场景下表现出高效性。通过分析和实现Java中的红黑树,我们可以深入理解这种数据结构的工作原理及其在实际应用中的价值。

Global site tag (gtag.js) - Google Analytics