基于hadoop的推荐算法,讲其中mahout实现的基于项目的推荐算法
分为4步:
1.获得人-物 用户矩阵
输入为所有人对物品的评价或关联
map端输出key为人,value为物品+倾好度
reeduce端输出key为人,vallue为多个物品+倾好度
2.获得物-物 项目矩阵
输入为“用户矩阵”,讲每一行人-物数据中的物品做笛卡尔积,生产成物-物的关联
map端输出为key为物,value为关联度
reduce端输出key为物,value为多个物的关联度
(可以根据各种规则生成项目相似度矩阵表,此处算法带过)
修改:
求项目相似矩阵是基于项目的协同过滤算法的核心
公式有很多种,核心是物品i和物品j相关用户的交集与并集的商
mahout使用的公式是1.dot(i,j) = sum(Pi(u)*Pi(u))
2.norms(i) = sum(Pi(u)^2)
3.simi(i,j) = 1/(1+(norms(i)-2*dot(i,j)+noorm(i))^1/2)
mahout的实现方法是
第一个job,用物品-人的矩阵,求得norms,即物品的用户平方和,输出是物-norms
第二个job,Map:用人-物的矩阵,求Pi(u)*Pi(u),即相同用户的物品的评价的乘机,输出物-多个对端物品的Pi(u)*Pi(u)
Reduce:用物-多个对端物品的Pi(u)*Pi(u)和物-norms,求得物品的相似矩阵(因为这个时候可以汇总所有和这个物品相关的物品的dot)
第三个job,补全物品的相似矩阵
3.获得用户-项目相似矩阵
输入为人-物 用户矩阵 和 物-物 项目矩阵
Map端输出key为物,value为类VectorOrPrefWritable,是包含物与人的倾好度,或是物与物的相似度
reduce端输出key为物,value为类VectorAndPrefWritable,是汇总当个物品到所有人的倾好度和到所有物品的相似度
4.获得用户推荐矩阵
输入为VectorAndPrefWritable
Map端输出为key:人,value:物+系数(map端根据单个物品贡献的系数生成推荐系数,也就是人到物品A的倾好度*物品A到其他物品的相似度)
reduce端输出为key:人,,value:推荐项目+系数(reduce端使用自定公式,汇总所有单物品贡献的四叔,求人到其他项目的倾好度,取topn作为当前用户的推荐项目)
再在这里贴几个mahout推荐算法分析的帖子:
http://eric-gcm.iteye.com/blog/1817822
http://eric-gcm.iteye.com/blog/1818033
http://eric-gcm.iteye.com/blog/1820060
以下是mahout代码:
ItemSimilarityJob类是mahout使用hadoop做推荐引擎的主要实现类,下面开始分析。
run()函数是启动函数:
- public final class RecommenderJob extends AbstractJob {
- public static final String BOOLEAN_DATA = "booleanData";
- private static final int DEFAULT_MAX_SIMILARITIES_PER_ITEM = 100;
- private static final int DEFAULT_MAX_PREFS_PER_USER = 1000;
- private static final int DEFAULT_MIN_PREFS_PER_USER = 1;
- @Override
- public int run(String[] args) throws Exception {
- //这里原来有大一堆代码,都是用来载入配置项,不用管它
- //第一步:准备矩阵,将原始数据转换为一个矩阵,在PreparePreferenceMatrixJob这个类中完成
- if (shouldRunNextPhase(parsedArgs, currentPhase)) {
- ToolRunner.run(getConf(), new PreparePreferenceMatrixJob(), new String[]{
- "--input", getInputPath().toString(),
- "--output", prepPath.toString(),
- "--maxPrefsPerUser", String.valueOf(maxPrefsPerUserInItemSimilarity),
- "--minPrefsPerUser", String.valueOf(minPrefsPerUser),
- "--booleanData", String.valueOf(booleanData),
- "--tempDir", getTempPath().toString()});
- numberOfUsers = HadoopUtil.readInt(new Path(prepPath, PreparePreferenceMatrixJob.NUM_USERS), getConf());
- }
- //第二步:计算协同矩阵
- if (shouldRunNextPhase(parsedArgs, currentPhase)) {
- /* special behavior if phase 1 is skipped */
- if (numberOfUsers == -1) {
- numberOfUsers = (int) HadoopUtil.countRecords(new Path(prepPath, PreparePreferenceMatrixJob.USER_VECTORS),
- PathType.LIST, null, getConf());
- }
- /* Once DistributedRowMatrix uses the hadoop 0.20 API, we should refactor this call to something like
- * new DistributedRowMatrix(...).rowSimilarity(...) */
- //calculate the co-occurrence matrix
- ToolRunner.run(getConf(), new RowSimilarityJob(), new String[]{
- "--input", new Path(prepPath, PreparePreferenceMatrixJob.RATING_MATRIX).toString(),
- "--output", similarityMatrixPath.toString(),
- "--numberOfColumns", String.valueOf(numberOfUsers),
- "--similarityClassname", similarityClassname,
- "--maxSimilaritiesPerRow", String.valueOf(maxSimilaritiesPerItem),
- "--excludeSelfSimilarity", String.valueOf(Boolean.TRUE),
- "--threshold", String.valueOf(threshold),
- "--tempDir", getTempPath().toString()});
- }
- //start the multiplication of the co-occurrence matrix by the user vectors
- if (shouldRunNextPhase(parsedArgs, currentPhase)) {
- Job prePartialMultiply1 = prepareJob(
- similarityMatrixPath, prePartialMultiplyPath1, SequenceFileInputFormat.class,
- SimilarityMatrixRowWrapperMapper.class, VarIntWritable.class, VectorOrPrefWritable.class,
- Reducer.class, VarIntWritable.class, VectorOrPrefWritable.class,
- SequenceFileOutputFormat.class);
- boolean succeeded = prePartialMultiply1.waitForCompletion(true);
- if (!succeeded)
- return -1;
- //continue the multiplication
- Job prePartialMultiply2 = prepareJob(new Path(prepPath, PreparePreferenceMatrixJob.USER_VECTORS),
- prePartialMultiplyPath2, SequenceFileInputFormat.class, UserVectorSplitterMapper.class, VarIntWritable.class,
- VectorOrPrefWritable.class, Reducer.class, VarIntWritable.class, VectorOrPrefWritable.class,
- SequenceFileOutputFormat.class);
- if (usersFile != null) {
- prePartialMultiply2.getConfiguration().set(UserVectorSplitterMapper.USERS_FILE, usersFile);
- }
- prePartialMultiply2.getConfiguration().setInt(UserVectorSplitterMapper.MAX_PREFS_PER_USER_CONSIDERED,
- maxPrefsPerUser);
- succeeded = prePartialMultiply2.waitForCompletion(true);
- if (!succeeded)
- return -1;
- //finish the job
- Job partialMultiply = prepareJob(
- new Path(prePartialMultiplyPath1 + "," + prePartialMultiplyPath2), partialMultiplyPath,
- SequenceFileInputFormat.class, Mapper.class, VarIntWritable.class, VectorOrPrefWritable.class,
- ToVectorAndPrefReducer.class, VarIntWritable.class, VectorAndPrefsWritable.class,
- SequenceFileOutputFormat.class);
- setS3SafeCombinedInputPath(partialMultiply, getTempPath(), prePartialMultiplyPath1, prePartialMultiplyPath2);
- succeeded = partialMultiply.waitForCompletion(true);
- if (!succeeded)
- return -1;
- }
- if (shouldRunNextPhase(parsedArgs, currentPhase)) {
- //filter out any users we don't care about
- /* convert the user/item pairs to filter if a filterfile has been specified */
- if (filterFile != null) {
- Job itemFiltering = prepareJob(new Path(filterFile), explicitFilterPath, TextInputFormat.class,
- ItemFilterMapper.class, VarLongWritable.class, VarLongWritable.class,
- ItemFilterAsVectorAndPrefsReducer.class, VarIntWritable.class, VectorAndPrefsWritable.class,
- SequenceFileOutputFormat.class);
- boolean succeeded = itemFiltering.waitForCompletion(true);
- if (!succeeded)
- return -1;
- }
- String aggregateAndRecommendInput = partialMultiplyPath.toString();
- if (filterFile != null) {
- aggregateAndRecommendInput += "," + explicitFilterPath;
- }
- //extract out the recommendations
- Job aggregateAndRecommend = prepareJob(
- new Path(aggregateAndRecommendInput), outputPath, SequenceFileInputFormat.class,
- PartialMultiplyMapper.class, VarLongWritable.class, PrefAndSimilarityColumnWritable.class,
- AggregateAndRecommendReducer.class, VarLongWritable.class, RecommendedItemsWritable.class,
- TextOutputFormat.class);
- Configuration aggregateAndRecommendConf = aggregateAndRecommend.getConfiguration();
- if (itemsFile != null) {
- aggregateAndRecommendConf.set(AggregateAndRecommendReducer.ITEMS_FILE, itemsFile);
- }
- if (filterFile != null) {
- setS3SafeCombinedInputPath(aggregateAndRecommend, getTempPath(), partialMultiplyPath, explicitFilterPath);
- }
- setIOSort(aggregateAndRecommend);
- aggregateAndRecommendConf.set(AggregateAndRecommendReducer.ITEMID_INDEX_PATH,
- new Path(prepPath, PreparePreferenceMatrixJob.ITEMID_INDEX).toString());
- aggregateAndRecommendConf.setInt(AggregateAndRecommendReducer.NUM_RECOMMENDATIONS, numRecommendations);
- aggregateAndRecommendConf.setBoolean(BOOLEAN_DATA, booleanData);
- boolean succeeded = aggregateAndRecommend.waitForCompletion(true);
- if (!succeeded)
- return -1;
- }
- return 0;
- }
第二步,计算协同矩阵,主要在RowSimilarityJob 这个类中完成
- ToolRunner.run(getConf(), new RowSimilarityJob(), new String[]{
- "--input", new Path(prepPath, PreparePreferenceMatrixJob.RATING_MATRIX).toString(),
- "--output", similarityMatrixPath.toString(),
- "--numberOfColumns", String.valueOf(numberOfUsers),
- "--similarityClassname", similarityClassname,
- "--maxSimilaritiesPerRow", String.valueOf(maxSimilaritiesPerItem),
- "--excludeSelfSimilarity", String.valueOf(Boolean.TRUE),
- "--threshold", String.valueOf(threshold),
- "--tempDir", getTempPath().toString()});
- }
可以看到这个job的输入路径就是上一篇中,PreparePreferenceMatrixJob中最后一个reducer的输出路径。
下边详细分析RowSimilarityJob类的实现:
- public class RowSimilarityJob extends AbstractJob {
- @Override
- public int run(String[] args) throws Exception {
- //一大堆载入参数的代码,忽略
- //第一个MapReduce
- if (shouldRunNextPhase(parsedArgs, currentPhase)) {
- Job normsAndTranspose = prepareJob(getInputPath(), weightsPath, VectorNormMapper.class, IntWritable.class,
- VectorWritable.class, MergeVectorsReducer.class, IntWritable.class, VectorWritable.class);
- normsAndTranspose.setCombinerClass(MergeVectorsCombiner.class);
- Configuration normsAndTransposeConf = normsAndTranspose.getConfiguration();
- normsAndTransposeConf.set(THRESHOLD, String.valueOf(threshold));
- normsAndTransposeConf.set(NORMS_PATH, normsPath.toString());
- normsAndTransposeConf.set(NUM_NON_ZERO_ENTRIES_PATH, numNonZeroEntriesPath.toString());
- normsAndTransposeConf.set(MAXVALUES_PATH, maxValuesPath.toString());
- normsAndTransposeConf.set(SIMILARITY_CLASSNAME, similarityClassname);
- boolean succeeded = normsAndTranspose.waitForCompletion(true);
- if (!succeeded) {
- return -1;
- }
- }
- //第二个MapReduce
- if (shouldRunNextPhase(parsedArgs, currentPhase)) {
- Job pairwiseSimilarity = prepareJob(weightsPath, pairwiseSimilarityPath, CooccurrencesMapper.class,
- IntWritable.class, VectorWritable.class, SimilarityReducer.class, IntWritable.class, VectorWritable.class);
- pairwiseSimilarity.setCombinerClass(VectorSumReducer.class);
- Configuration pairwiseConf = pairwiseSimilarity.getConfiguration();
- pairwiseConf.set(THRESHOLD, String.valueOf(threshold));
- pairwiseConf.set(NORMS_PATH, normsPath.toString());
- pairwiseConf.set(NUM_NON_ZERO_ENTRIES_PATH, numNonZeroEntriesPath.toString());
- pairwiseConf.set(MAXVALUES_PATH, maxValuesPath.toString());
- pairwiseConf.set(SIMILARITY_CLASSNAME, similarityClassname);
- pairwiseConf.setInt(NUMBER_OF_COLUMNS, numberOfColumns);
- pairwiseConf.setBoolean(EXCLUDE_SELF_SIMILARITY, excludeSelfSimilarity);
- boolean succeeded = pairwiseSimilarity.waitForCompletion(true);
- if (!succeeded) {
- return -1;
- }
- }
- //第三个MapReduce
- if (shouldRunNextPhase(parsedArgs, currentPhase)) {
- Job asMatrix = prepareJob(pairwiseSimilarityPath, getOutputPath(), UnsymmetrifyMapper.class,
- IntWritable.class, VectorWritable.class, MergeToTopKSimilaritiesReducer.class, IntWritable.class,
- VectorWritable.class);
- asMatrix.setCombinerClass(MergeToTopKSimilaritiesReducer.class);
- asMatrix.getConfiguration().setInt(MAX_SIMILARITIES_PER_ROW, maxSimilaritiesPerRow);
- boolean succeeded = asMatrix.waitForCompletion(true);
- if (!succeeded) {
- return -1;
- }
- }
- return 0;
- }
可以看到RowSimilityJob也是分成三个MapReduce过程:
1、Mapper :VectorNormMapper类,输出 ( userid_index, <itemid_index, pref> )类型
- public static class VectorNormMapper extends Mapper<IntWritable,VectorWritable,IntWritable,VectorWritable> {
- @Override
- protected void map(IntWritable row, VectorWritable vectorWritable, Context ctx)
- throws IOException, InterruptedException {
- Vector rowVector = similarity.normalize(vectorWritable.get());
- int numNonZeroEntries = 0;
- double maxValue = Double.MIN_VALUE;
- Iterator<Vector.Element> nonZeroElements = rowVector.iterateNonZero();
- while (nonZeroElements.hasNext()) {
- Vector.Element element = nonZeroElements.next();
- RandomAccessSparseVector partialColumnVector = new RandomAccessSparseVector(Integer.MAX_VALUE);
- partialColumnVector.setQuick(row.get(), element.get());
- //输出 ( userid_index, <itemid_index, pref> )类型
- ctx.write(new IntWritable(element.index()), new VectorWritable(partialColumnVector));
- numNonZeroEntries++;
- if (maxValue < element.get()) {
- maxValue = element.get();
- }
- }
- if (threshold != NO_THRESHOLD) {
- nonZeroEntries.setQuick(row.get(), numNonZeroEntries);
- maxValues.setQuick(row.get(), maxValue);
- }
- norms.setQuick(row.get(), similarity.norm(rowVector));
- //计算item的总数
- ctx.getCounter(Counters.ROWS).increment(1);
- }
- }
Reduer : MergeVectorsReducer类,输入的是(userid_index, <itemid_index, pref>),同一个userid_index在此进行合并,输出( userid_index, vector<itemid_index, pref> )
- public static class MergeVectorsReducer extends Reducer<IntWritable,VectorWritable,IntWritable,VectorWritable> {
- @Override
- protected void reduce(IntWritable row, Iterable<VectorWritable> partialVectors, Context ctx)
- throws IOException, InterruptedException {
- Vector partialVector = Vectors.merge(partialVectors);
- if (row.get() == NORM_VECTOR_MARKER) {
- Vectors.write(partialVector, normsPath, ctx.getConfiguration());
- } else if (row.get() == MAXVALUE_VECTOR_MARKER) {
- Vectors.write(partialVector, maxValuesPath, ctx.getConfiguration());
- } else if (row.get() == NUM_NON_ZERO_ENTRIES_VECTOR_MARKER) {
- Vectors.write(partialVector, numNonZeroEntriesPath, ctx.getConfiguration(), true);
- } else {
- ctx.write(row, new VectorWritable(partialVector));
- }
- }
- }
- }
2、Mapper:CooccurrencesMapper类,对同一个userid_index下的vector<itemid_index ,pref>进行处理,
收集<item1, item2>对, 输出为( itemid_index, vector<itemid_index, value> )
- public static class CooccurrencesMapper extends Mapper<IntWritable,VectorWritable,IntWritable,VectorWritable> {
- @Override
- protected void map(IntWritable column, VectorWritable occurrenceVector, Context ctx)
- throws IOException, InterruptedException {
- Vector.Element[] occurrences = Vectors.toArray(occurrenceVector);
- Arrays.sort(occurrences, BY_INDEX);
- int cooccurrences = 0;
- int prunedCooccurrences = 0;
- for (int n = 0; n < occurrences.length; n++) {
- Vector.Element occurrenceA = occurrences[n];
- Vector dots = new RandomAccessSparseVector(Integer.MAX_VALUE);
- for (int m = n; m < occurrences.length; m++) {
- Vector.Element occurrenceB = occurrences[m];
- if (threshold == NO_THRESHOLD || consider(occurrenceA, occurrenceB)) {
- dots.setQuick(occurrenceB.index(), similarity.aggregate(occurrenceA.get(), occurrenceB.get()));
- cooccurrences++;
- } else {
- prunedCooccurrences++;
- }
- }
- ctx.write(new IntWritable(occurrenceA.index()), new VectorWritable(dots));
- }
- ctx.getCounter(Counters.COOCCURRENCES).increment(cooccurrences);
- ctx.getCounter(Counters.PRUNED_COOCCURRENCES).increment(prunedCooccurrences);
- }
- }
Reducer :SimilarityReducer类,生成协同矩阵
- public static class SimilarityReducer
- extends Reducer<IntWritable,VectorWritable,IntWritable,VectorWritable> {
- @Override
- protected void reduce(IntWritable row, Iterable<VectorWritable> partialDots, Context ctx)
- throws IOException, InterruptedException {
- Iterator<VectorWritable> partialDotsIterator = partialDots.iterator();
- //取一个vecotr作为该item的行向量
- Vector dots = partialDotsIterator.next().get();
- while (partialDotsIterator.hasNext()) {
- Vector toAdd = partialDotsIterator.next().get();
- Iterator<Vector.Element> nonZeroElements = toAdd.iterateNonZero();
- while (nonZeroElements.hasNext()) {
- Vector.Element nonZeroElement = nonZeroElements.next();
- //nonZeroElement.index()为itemid,将另一个vecotr中itemid的value加进去
- dots.setQuick(nonZeroElement.index(), dots.getQuick(nonZeroElement.index()) + nonZeroElement.get());
- }
- }
- //最后得到的dots是协同矩阵中行号为row的一行,行中元素是item对其他的item的相似度
- Vector similarities = dots.like();
- double normA = norms.getQuick(row.get());
- Iterator<Vector.Element> dotsWith = dots.iterateNonZero();
- while (dotsWith.hasNext()) {
- Vector.Element b = dotsWith.next();
- double similarityValue = similarity.similarity(b.get(), normA, norms.getQuick(b.index()), numberOfColumns);
- if (similarityValue >= treshold) {
- similarities.set(b.index(), similarityValue);
- }
- }
- if (excludeSelfSimilarity) {
- similarities.setQuick(row.get(), 0);
- }
- ctx.write(row, new VectorWritable(similarities));
- }
- }
3、Mapper:UnsymmetrifyMapper类,用来生成对称矩阵的。上一步得到的是非对称矩阵,首先将矩阵偏转,得到偏转矩阵,用原矩阵加上偏转矩阵,可以得到对称矩阵
- public static class UnsymmetrifyMapper extends Mapper<IntWritable,VectorWritable,IntWritable,VectorWritable> {
- private int maxSimilaritiesPerRow;
- @Override
- protected void setup(Mapper.Context ctx) throws IOException, InterruptedException {
- maxSimilaritiesPerRow = ctx.getConfiguration().getInt(MAX_SIMILARITIES_PER_ROW, 0);
- Preconditions.checkArgument(maxSimilaritiesPerRow > 0, "Incorrect maximum number of similarities per row!");
- }
- @Override
- protected void map(IntWritable row, VectorWritable similaritiesWritable, Context ctx)
- throws IOException, InterruptedException {
- Vector similarities = similaritiesWritable.get();
- // For performance reasons moved transposedPartial creation out of the while loop and reusing the same vector
- Vector transposedPartial = similarities.like();
- TopK<Vector.Element> topKQueue = new TopK<Vector.Element>(maxSimilaritiesPerRow, Vectors.BY_VALUE);
- Iterator<Vector.Element> nonZeroElements = similarities.iterateNonZero();
- //这个地方用来生成偏转矩阵的,非对称矩阵,用原矩阵加上偏转矩阵,可以得到对称矩阵
- while (nonZeroElements.hasNext()) {
- Vector.Element nonZeroElement = nonZeroElements.next();
- topKQueue.offer(new Vectors.TemporaryElement(nonZeroElement));
- transposedPartial.setQuick(row.get(), nonZeroElement.get());
- //偏转矩阵中的每一个元素
- ctx.write(new IntWritable(nonZeroElement.index()), new VectorWritable(transposedPartial));
- transposedPartial.setQuick(row.get(), 0.0);
- }
- Vector topKSimilarities = similarities.like();
- for (Vector.Element topKSimilarity : topKQueue.retrieve()) {
- topKSimilarities.setQuick(topKSimilarity.index(), topKSimilarity.get());
- }
- //这里只收集前maxSimilaritiesPerRow个得分最高的item,所以咱们最后的对称矩阵,实际上每行只有
- //maxSimilaritiesPerRow个是对称的,其他的位置也不管了
- ctx.write(row, new VectorWritable(topKSimilarities));
- }
- }
Reducer:MergeToTopKSimilaritiesReducer类,就是将上面Map偏转的元素都收集起来,也就是完成了偏转矩阵和(截取了得分前maxSimilaritiesPerRow个)的原矩阵相加的过程,得到了对称矩阵
- public static class MergeToTopKSimilaritiesReducer
- extends Reducer<IntWritable,VectorWritable,IntWritable,VectorWritable> {
- private int maxSimilaritiesPerRow;
- @Override
- protected void setup(Context ctx) throws IOException, InterruptedException {
- maxSimilaritiesPerRow = ctx.getConfiguration().getInt(MAX_SIMILARITIES_PER_ROW, 0);
- Preconditions.checkArgument(maxSimilaritiesPerRow > 0, "Incorrect maximum number of similarities per row!");
- }
- @Override
- protected void reduce(IntWritable row, Iterable<VectorWritable> partials, Context ctx)
- throws IOException, InterruptedException {
- Vector allSimilarities = Vectors.merge(partials);
- Vector topKSimilarities = Vectors.topKElements(maxSimilaritiesPerRow, allSimilarities);
- ctx.write(row, new VectorWritable(topKSimilarities));
- }
- }
至此,RowSimilarityJob类的全部工作就完成,最终生成的是一个对称矩阵,也就是协同矩阵
- //协同矩阵与用户向量相乘
- //start the multiplication of the co-occurrence matrix by the user vectors
- if (shouldRunNextPhase(parsedArgs, currentPhase)) {
- //第一个MapReducer
- Job prePartialMultiply1 = prepareJob(
- similarityMatrixPath, prePartialMultiplyPath1, SequenceFileInputFormat.class,
- SimilarityMatrixRowWrapperMapper.class, VarIntWritable.class, VectorOrPrefWritable.class,
- Reducer.class, VarIntWritable.class, VectorOrPrefWritable.class,
- SequenceFileOutputFormat.class);
- boolean succeeded = prePartialMultiply1.waitForCompletion(true);
- if (!succeeded)
- return -1;
- //第二个MapReduce
- //continue the multiplication
- Job prePartialMultiply2 = prepareJob(new Path(prepPath, PreparePreferenceMatrixJob.USER_VECTORS),
- prePartialMultiplyPath2, SequenceFileInputFormat.class, UserVectorSplitterMapper.class, VarIntWritable.class,
- VectorOrPrefWritable.class, Reducer.class, VarIntWritable.class, VectorOrPrefWritable.class,
- SequenceFileOutputFormat.class);
- if (usersFile != null) {
- prePartialMultiply2.getConfiguration().set(UserVectorSplitterMapper.USERS_FILE, usersFile);
- }
- prePartialMultiply2.getConfiguration().setInt(UserVectorSplitterMapper.MAX_PREFS_PER_USER_CONSIDERED,
- maxPrefsPerUser);
- succeeded = prePartialMultiply2.waitForCompletion(true);
- if (!succeeded)
- return -1;
- //finish the job
- //第三个MapReduce
- Job partialMultiply = prepareJob(
- new Path(prePartialMultiplyPath1 + "," + prePartialMultiplyPath2), partialMultiplyPath,
- SequenceFileInputFormat.class, Mapper.class, VarIntWritable.class, VectorOrPrefWritable.class,
- ToVectorAndPrefReducer.class, VarIntWritable.class, VectorAndPrefsWritable.class,
- SequenceFileOutputFormat.class);
- setS3SafeCombinedInputPath(partialMultiply, getTempPath(), prePartialMultiplyPath1, prePartialMultiplyPath2);
- succeeded = partialMultiply.waitForCompletion(true);
- if (!succeeded)
- return -1;
- }
下边也是同样分析一下这个三个MapReduce的细节:
1、Mapper: SimilarityMatrixRowWrapperMapper 类,将协同矩阵的一行拿出来,通过包装,封装成VectorOrPrefWritable类,与那边的UserVectorSplitterMapper 的输出类型一致
- public final class SimilarityMatrixRowWrapperMapper extends
- Mapper<IntWritable,VectorWritable,VarIntWritable,VectorOrPrefWritable> {
- //将协同矩阵的一行拿出来,通过包装,封装成VectorOrPrefWritable类,与那边的UserVectorSplitterMapper
- //的输出类型一致
- @Override
- protected void map(IntWritable key,
- VectorWritable value,
- Context context) throws IOException, InterruptedException {
- Vector similarityMatrixRow = value.get();
- /* remove self similarity */
- similarityMatrixRow.set(key.get(), Double.NaN);
- context.write(new VarIntWritable(key.get()), new VectorOrPrefWritable(similarityMatrixRow));
- }
- }
2、Mapper:UserVectorSplitterMapper类
- //输入格式: theUserID:<itemid_index1,pref1>,<itemid_index2,pref2>........<itemid_indexN,prefN>
- //输出格式: itemid1:<theUserID,pref1>
- // itemid2:<theUserID,pref2>
- // itemid3:<theUserID,pref3>
- // ......
- // itemidN:<theUserID,prefN>
- public final class UserVectorSplitterMapper extends
- Mapper<VarLongWritable,VectorWritable, VarIntWritable,VectorOrPrefWritable> {
- @Override
- protected void map(VarLongWritable key,
- VectorWritable value,
- Context context) throws IOException, InterruptedException {
- long userID = key.get();
- if (usersToRecommendFor != null && !usersToRecommendFor.contains(userID)) {
- return;
- }
- Vector userVector = maybePruneUserVector(value.get());
- Iterator<Vector.Element> it = userVector.iterateNonZero();
- VarIntWritable itemIndexWritable = new VarIntWritable();
- VectorOrPrefWritable vectorOrPref = new VectorOrPrefWritable();
- while (it.hasNext()) {
- Vector.Element e = it.next();
- itemIndexWritable.set(e.index());
- vectorOrPref.set(userID, (float) e.get());
- context.write(itemIndexWritable, vectorOrPref);
- }
- }
3、Reduce:ToVectorAndPrefReducer类,收集协同矩阵为itemid的一行,并且收集评价过该item的用户和评分,最后的输出是 itemid_index,VectorAndPrefsWritable(vector,List<userid>,List<pref>)
- public final class ToVectorAndPrefReducer extends
- Reducer<VarIntWritable,VectorOrPrefWritable,VarIntWritable,VectorAndPrefsWritable> {
- //收集所有key为itemid的
- @Override
- protected void reduce(VarIntWritable key,
- Iterable<VectorOrPrefWritable> values,
- Context context) throws IOException, InterruptedException {
- List<Long> userIDs = Lists.newArrayList();
- List<Float> prefValues = Lists.newArrayList();
- Vector similarityMatrixColumn = null;
- for (VectorOrPrefWritable value : values) {
- if (value.getVector() == null) {
- // Then this is a user-pref value
- userIDs.add(value.getUserID());
- prefValues.add(value.getValue());
- } else {
- // Then this is the column vector
- //协同矩阵的一个行(行号为itemid的一行)
- if (similarityMatrixColumn != null) {
- throw new IllegalStateException("Found two similarity-matrix columns for item index " + key.get());
- }
- similarityMatrixColumn = value.getVector();
- }
- }
- if (similarityMatrixColumn == null) {
- return;
- }
- //收集协同矩阵为itemid的一行,并且手机评价过该item的用户和评分
- VectorAndPrefsWritable vectorAndPrefs = new VectorAndPrefsWritable(similarityMatrixColumn, userIDs, prefValues);
- context.write(key, vectorAndPrefs);
- }
- }
第四步,协同矩阵和用户向量相乘,得到推荐结果
- //extract out the recommendations
- Job aggregateAndRecommend = prepareJob(
- new Path(aggregateAndRecommendInput), outputPath, SequenceFileInputFormat.class,
- PartialMultiplyMapper.class, VarLongWritable.class, PrefAndSimilarityColumnWritable.class,
- AggregateAndRecommendReducer.class, VarLongWritable.class, RecommendedItemsWritable.class,
- TextOutputFormat.class);
- Configuration aggregateAndRecommendConf = aggregateAndRecommend.getConfiguration();
Mapper:PartialMultiplyMapper类
- //输入类型:( itemid_index, <userid的数组,pref的数组,协同矩阵行号为itemid_index的行> )
- //输出类型: userid,<该用户对itemid_index1的评分,协同矩阵行号为itemid_index1的行> )
- // userid,<该用户对itemid_index2的评分,协同矩阵行号为itemid_index2的行> )
- // .....
- // .....
- // userid,<该用户对itemid_indexN的评分,协同矩阵行号为itemid_indexN的行> )
- public final class PartialMultiplyMapper extends
- Mapper<VarIntWritable,VectorAndPrefsWritable,VarLongWritable,PrefAndSimilarityColumnWritable> {
- @Override
- protected void map(VarIntWritable key,
- VectorAndPrefsWritable vectorAndPrefsWritable,
- Context context) throws IOException, InterruptedException {
- Vector similarityMatrixColumn = vectorAndPrefsWritable.getVector();
- List<Long> userIDs = vectorAndPrefsWritable.getUserIDs();
- List<Float> prefValues = vectorAndPrefsWritable.getValues();
- VarLongWritable userIDWritable = new VarLongWritable();
- PrefAndSimilarityColumnWritable prefAndSimilarityColumn = new PrefAndSimilarityColumnWritable();
- for (int i = 0; i < userIDs.size(); i++) {
- long userID = userIDs.get(i);
- float prefValue = prefValues.get(i);
- if (!Float.isNaN(prefValue)) {
- prefAndSimilarityColumn.set(prefValue, similarityMatrixColumn);
- userIDWritable.set(userID);
- context.write(userIDWritable, prefAndSimilarityColumn);
- }
- }
- }
- }
Reducer:AggregateAndRecommendReducer类,Reducer中进行PartialMultiply,按乘积得到的推荐度的大小取出最大的几个item。对于非booleanData,是用pref和相似度矩阵的PartialMultiply得到推荐度的值来进行排序。
而booleanData的pref值都是1.0f,所以去计算矩阵相乘的过程没有意义,直接累加相似度的值即可。
用这个数据排序就可得到推荐结果
- public final class AggregateAndRecommendReducer extends
- Reducer<VarLongWritable,PrefAndSimilarityColumnWritable,VarLongWritable,RecommendedItemsWritable> {
- @Override
- protected void reduce(VarLongWritable userID,
- Iterable<PrefAndSimilarityColumnWritable> values,
- Context context) throws IOException, InterruptedException {
- if (booleanData) {
- reduceBooleanData(userID, values, context);
- } else {
- reduceNonBooleanData(userID, values, context);
- }
- }
- private void reduceBooleanData(VarLongWritable userID,
- Iterable<PrefAndSimilarityColumnWritable> values,
- Context context) throws IOException, InterruptedException {
- /* having boolean data, each estimated preference can only be 1,
- * however we can't use this to rank the recommended items,
- * so we use the sum of similarities for that. */
- Vector predictionVector = null;
- for (PrefAndSimilarityColumnWritable prefAndSimilarityColumn : values) {
- predictionVector = predictionVector == null
- ? prefAndSimilarityColumn.getSimilarityColumn()
- : predictionVector.plus(prefAndSimilarityColumn.getSimilarityColumn());
- }
- writeRecommendedItems(userID, predictionVector, context);
- }
- private void reduceNonBooleanData(VarLongWritable userID,
- Iterable<PrefAndSimilarityColumnWritable> values,
- Context context) throws IOException, InterruptedException {
- /* each entry here is the sum in the numerator of the prediction formula */
- Vector numerators = null;
- /* each entry here is the sum in the denominator of the prediction formula */
- Vector denominators = null;
- /* each entry here is the number of similar items used in the prediction formula */
- Vector numberOfSimilarItemsUsed = new RandomAccessSparseVector(Integer.MAX_VALUE, 100);
- for (PrefAndSimilarityColumnWritable prefAndSimilarityColumn : values) {
- Vector simColumn = prefAndSimilarityColumn.getSimilarityColumn();
- float prefValue = prefAndSimilarityColumn.getPrefValue();
- /* count the number of items used for each prediction */
- Iterator<Vector.Element> usedItemsIterator = simColumn.iterateNonZero();
- while (usedItemsIterator.hasNext()) {
- int itemIDIndex = usedItemsIterator.next().index();
- numberOfSimilarItemsUsed.setQuick(itemIDIndex, numberOfSimilarItemsUsed.getQuick(itemIDIndex) + 1);
- }
- //vector.times(float) 是向量乘于一个数,也就是向量的每一个值都乘以这个数
- //vector.plus(vector) 是两个向量相加,每一个位置上的值相加
- //numerators是一个vecotr,每一个元素是这样的
- /*
- 例如index为item1的元素的值为:
- simility(item1, item_2)*pref(userid, item_2)
- + simility(item_1, item_3)*pref(userid, item_3)
- + simility(item1, item_4)*pref(userid, item_4)
- + ……
- + simility(item_1, item_2)*pref(userid, item_N)
- */
- // 注:其中simility(item1, item2)代表物品item1和物品item2的相似度 ,pref(userid, item)代表用于userid对item打分分值
- numerators = numerators == null
- ? prefValue == BOOLEAN_PREF_VALUE ? simColumn.clone() : simColumn.times(prefValue)
- : numerators.plus(prefValue == BOOLEAN_PREF_VALUE ? simColumn : simColumn.times(prefValue));
- simColumn.assign(ABSOLUTE_VALUES);
- //denominators是一个vecotr,每一个元素是这样的
- /*
- 例如index为item1的元素的值为:
- simility(item1, item_2)+ simility(item_1, item_3)+ …… + simility(item_1, item_2)*pref(userid, item_N)
- */
- // 注:其中simility(item1, item2)代表物品item1和物品item2的相似度
- denominators = denominators == null ? simColumn : denominators.plus(simColumn);
- }
- if (numerators == null) {
- return;
- }
- Vector recommendationVector = new RandomAccessSparseVector(Integer.MAX_VALUE, 100);
- Iterator<Vector.Element> iterator = numerators.iterateNonZero();
- while (iterator.hasNext()) {
- Vector.Element element = iterator.next();
- int itemIDIndex = element.index();
- /* preference estimations must be based on at least 2 datapoints */
- if (numberOfSimilarItemsUsed.getQuick(itemIDIndex) > 1) {
- /* compute normalized prediction */
- //计算归一化预测值
- double prediction = element.get() / denominators.getQuick(itemIDIndex);
- recommendationVector.setQuick(itemIDIndex, prediction);
- }
- }
- writeRecommendedItems(userID, recommendationVector, context);
- }
- }
相关推荐
接下来将深入探讨基于Hadoop-Mahout的分布式课程推荐算法的设计与实现。 首先,推荐系统是分布式系统中的一项重要应用。它能够向用户推荐符合他们兴趣或需求的产品或服务,包括书籍、电影、音乐和在线课程等。在...
Apache Mahout是基于Hadoop的数据挖掘库,提供了一套用于实现推荐系统、分类和聚类算法的工具。这个项目的目标是创建易于使用的、高效的机器学习算法,使大数据分析变得更加简单。 2. **源码分析**: 在源码中,...
《Apache Maven与Mahout实战:基于maven_mahout_template-mahout-0.8的探索》 Apache Maven是一款强大的项目管理和依赖管理工具,广泛应用于Java开发领域。它通过一个项目对象模型(Project Object Model,POM)来...
- Mahout作为基于Hadoop的机器学习库,提供了丰富的数据挖掘算法实现推荐系统的推荐算法层。 - 分布式推荐引擎的架构设计需要考虑如何将推荐算法高效地部署在分布式环境中,确保推荐过程的稳定性和可扩展性。 3. ...
这个"apache-mahout-distribution-0.10.2"压缩包包含的是Mahout的0.10.2版本,该版本是2014年发布的一个稳定版本,旨在帮助大数据研发人员构建和实现复杂的机器学习模型。 在大数据领域,机器学习是关键的技术之一...
Apache Mahout是一个基于Apache Hadoop的数据挖掘库,专注于大规模机器学习算法的实现。这个压缩包包含的是Mahout项目不同版本的核心库,分别是mahout-core-0.9.jar、mahout-core-0.8.jar和mahout-core-0.1.jar。...
HBase是一个基于Hadoop的分布式NoSQL数据库,专为大规模随机读写操作设计。HBase API提供了一套用于操作表格、行、列族和时间戳的接口,使开发人员能够轻松地存储和检索大量结构化和半结构化数据。HBase与Hadoop的...
《Hadoop-Mahout:基于Hadoop的大数据处理与机器学习实践》 Hadoop-Mahout 是一个基于Apache Hadoop的开源项目,专注于提供大规模的数据挖掘和机器学习算法。这个项目的目标是创建易于使用的、可扩展的机器学习库,...
Apache Mahout是一个基于Hadoop的大规模数据集上实现的机器学习库,它的主要目标是提供简单易用的算法,用于构建智能应用。在标题中提到的"apache-mahout-distribution-0.12.2.tar.gz"是Mahout的一个发行版本,版本...
Hadoop是一个开源的分布式计算框架,而Mahout是基于Hadoop的数据挖掘库,专注于机器学习算法。这两者的结合在大数据分析和预测模型构建中具有广泛的应用。 在“hadoop2.7.3+mahout0.9问题集”中,我们可能遇到的...
Apache Mahout是一个基于Apache Hadoop的机器学习库,它提供了多种推荐、分类和聚类算法。Mahout的核心目标是让数据科学家和开发人员能够轻松地构建智能应用程序,通过大规模分布式计算来处理海量数据。在这个项目中...
Taste 提供了一个高效的推荐引擎,支持基于 Java 的开发,具备良好的可扩展性,并且能够利用 Hadoop 的分布式架构,以 MapReduce 方式提升推荐算法的处理能力。Taste 包含了多种推荐算法的实现,如基于用户的、基于...
Apache Mahout是一个开源项目,专注于开发可扩展的...通过深入研究"apache-mahout-trunk_java_物联_源码.zip",开发者不仅可以提升对机器学习算法的理解,还能掌握大数据处理的实践技巧,特别是在物联网环境中的应用。
【标题】"基于Hadoop的推荐算法详细讲解" 在大数据时代,推荐系统已经成为许多在线服务不可或缺的一部分,如电商、音乐流媒体和视频平台等。它们通过分析用户的行为和偏好,为用户提供个性化的内容推荐,从而提高...
Apache Mahout是一个基于Hadoop的数据挖掘库,它提供了多种推荐算法的实现,如协同过滤、基于内容的推荐以及混合推荐方法。 Mahout的协同过滤算法是其核心功能之一,它通过分析用户的历史行为来预测他们可能感兴趣...
Apache Mahout是一个基于Apache Hadoop的数据挖掘库,专注于大规模机器学习算法的实现。这个压缩包“mahout-distribution-0.12.2-src.tar.gz”是Mahout项目的一个源码版本,版本号为0.12.2,提供给开发者进行深度...
Apache Mahout是基于Hadoop的数据挖掘库,提供了多种机器学习算法,包括分类、聚类和推荐。在本项目中,Mahout被用作实现协同过滤推荐算法的工具,它支持大规模数据集的处理,并可以与其他大数据处理框架如Hadoop和...
在Hadoop生态系统中,我们可以通过Apache Mahout或者Spark MLlib等库实现基于MapReduce的推荐算法。Mahout提供了丰富的推荐算法实现,包括基于用户和物品的协同过滤,而Spark的并行计算能力则使得实时推荐成为可能。...
为了解决这一问题,Apache Mahout在Hadoop平台上实现了基于项目的分布式协同过滤推荐算法。Mahout是一个开源的机器学习框架,它利用Hadoop强大的存储和计算能力,将协同过滤推荐算法向分布式方向进行了扩展。该算法...
本文探讨了基于Hadoop与Mahout的云数据挖掘推荐系统,旨在通过并行化的架构和算法处理和分析大数据集,解决传统数据管理难以深度挖掘云端数据的问题,并将云数据转化为有用的资讯和知识,以期在特定领域实现其价值。...