- 浏览: 111952 次
- 性别:
- 来自: 深圳
文章分类
最新评论
-
土豆蛋儿:
我想读取一个外部文件,以什么方式好了? 文件内容经常编辑
flume 自定义source -
土豆蛋儿:
大神,您好。
flume 自定义source
索引是标准的数据库技术,hive 0.7版本之后支持索引。hive索引采用的不是'one size fites all'的索引实现方式,而是提供插入式接口,并且提供一个具体的索引实现作为参考。Hive的Index接口如下:
复制代码
public interface HiveIndexHandler extends Configurable {
/**
* Determines whether this handler implements indexes by creating an index
* table.
*
* @return true if index creation implies creation of an index table in Hive;
* false if the index representation is not stored in a Hive table
*/
boolean usesIndexTable();
/**
* Requests that the handler validate an index definition and fill in
* additional information about its stored representation.
* @throw HiveException if the index definition is invalid with respect to
* either the base table or the supplied index table definition
*/
void analyzeIndexDefinition(
org.apache.hadoop.hive.metastore.api.Table baseTable,
org.apache.hadoop.hive.metastore.api.Index index,
org.apache.hadoop.hive.metastore.api.Table indexTable)
throws HiveException;
/**
* Requests that the handler generate a plan for building the index; the plan
* should read the base table and write out the index representation.
*/
List<Task<?>> generateIndexBuildTaskList(
org.apache.hadoop.hive.ql.metadata.Table baseTbl,
org.apache.hadoop.hive.metastore.api.Index index,
List<Partition> indexTblPartitions, List<Partition> baseTblPartitions,
org.apache.hadoop.hive.ql.metadata.Table indexTbl,
Set<ReadEntity> inputs, Set<WriteEntity> outputs)
throws HiveException;
}
复制代码
创建索引的时候,Hive首先调用接口的usesIndexTable方法,判断索引是否是已Hive Table的方式存储(默认的实现是存储在Hive中的)。然后调用analyzeIndexDefinition分析索引创建语句是否合法,如果没有问题将在元数据标IDXS中添加索引表,否则抛出异常。如果索引创建语句中使用with deferred rebuild,在执行alter index xxx_index on xxx rebuild时将调用generateIndexBuildTaskList获取Index的MapReduce,并执行为索引填充数据。
下面是借鉴别人设计的测试索引的例子:
首先生成测试数据:
复制代码
#! /bin/bash
#generating 350M raw data.
i=0
while [ $i -ne 1000000 ]
do
echo -e "$i\tA decade ago, many were predicting that Cooke, a New York City prodigy, would become a basketball shoe pitchman and would flaunt his wares and skills at All-Star weekends like the recent aerial show in Orlando, Fla. There was a time, however fleeting, when he was more heralded, or perhaps merely hyped, than any other high school player in America."
i=$(($i+1))
done
复制代码
创建测试表:
hive> create table table01( id int, name string)
> ROW FORMAT DELIMITED
> FIELDS TERMINATED BY '\t';
OK
Time taken: 0.371 seconds
hive> load data local inpath '/home/hadoop/hive_index_test/dual.txt' overwrite into table table01;
Copying data from file:/home/hadoop/hive_index_test/dual.txt
Copying file: file:/home/hadoop/hive_index_test/dual.txt
Loading data to table default.table01
Deleted hdfs://localhost:9000/user/hive/warehouse/table01
OK
Time taken: 13.492 seconds
hive> create table table02 as select id,name as text from table01;
Total MapReduce jobs = 2
Launching Job 1 out of 2
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_201301221042_0006, Tracking URL = http://localhost:50030/jobdetails.jsp?jobid=job_201301221042_0006
Kill Command = /usr/local/hadoop/bin/../bin/hadoop job -Dmapred.job.tracker=localhost:9001 -kill job_201301221042_0006
2013-01-22 11:21:19,639 Stage-1 map = 0%, reduce = 0%
2013-01-22 11:21:25,678 Stage-1 map = 33%, reduce = 0%
2013-01-22 11:21:37,754 Stage-1 map = 67%, reduce = 0%
2013-01-22 11:21:43,788 Stage-1 map = 100%, reduce = 0%
2013-01-22 11:21:46,828 Stage-1 map = 100%, reduce = 100%
Ended Job = job_201301221042_0006
Ended Job = -663277165, job is filtered out (removed at runtime).
Moving data to: hdfs://localhost:9000/tmp/hive-hadoop/hive_2013-01-22_11-21-13_661_2061036951988537032/-ext-10001
Moving data to: hdfs://localhost:9000/user/hive/warehouse/table02
1000000 Rows loaded to hdfs://localhost:9000/tmp/hive-hadoop/hive_2013-01-22_11-21-13_661_2061036951988537032/-ext-10000
OK
Time taken: 33.904 seconds
hive> dfs -ls /user/hive/warehouse/table02;
Found 6 items
-rw-r--r-- 3 hadoop supergroup 67109134 2013-01-22 11:21 /user/hive/warehouse/table02/000000_0
-rw-r--r-- 3 hadoop supergroup 67108860 2013-01-22 11:21 /user/hive/warehouse/table02/000001_0
-rw-r--r-- 3 hadoop supergroup 67108860 2013-01-22 11:21 /user/hive/warehouse/table02/000002_0
-rw-r--r-- 3 hadoop supergroup 67108860 2013-01-22 11:21 /user/hive/warehouse/table02/000003_0
-rw-r--r-- 3 hadoop supergroup 67108860 2013-01-22 11:21 /user/hive/warehouse/table02/000004_0
-rw-r--r-- 3 hadoop supergroup 21344316 2013-01-22 11:21 /user/hive/warehouse/table02/000005_0
hive> select * from table02 where id=500000;
Total MapReduce jobs = 1
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_201301221042_0007, Tracking URL = http://localhost:50030/jobdetails.jsp?jobid=job_201301221042_0007
Kill Command = /usr/local/hadoop/bin/../bin/hadoop job -Dmapred.job.tracker=localhost:9001 -kill job_201301221042_0007
2013-01-22 11:22:26,865 Stage-1 map = 0%, reduce = 0%
2013-01-22 11:22:28,884 Stage-1 map = 33%, reduce = 0%
2013-01-22 11:22:31,905 Stage-1 map = 67%, reduce = 0%
2013-01-22 11:22:34,921 Stage-1 map = 100%, reduce = 0%
2013-01-22 11:22:37,943 Stage-1 map = 100%, reduce = 100%
Ended Job = job_201301221042_0007
OK
500000 A decade ago, many were predicting that Cooke, a New York City prodigy, would become a basketball shoe pitchman and would flaunt his wares and skills at All-Star weekends like the recent aerial show in Orlando, Fla. There was a time, however fleeting, when he was more heralded, or perhaps merely hyped, than any other high school player in America.
Time taken: 18.551 seconds
创建索引:
hive> create index table02_index on table table02(id)
> as 'org.apache.hadoop.hive.ql.index.compact.CompactIndexHandler'
> with deferred rebuild;
OK
Time taken: 0.503 seconds
填充索引数据:
hive> alter index table02_index on table02 rebuild;
Total MapReduce jobs = 1
Launching Job 1 out of 1
Number of reduce tasks not specified. Estimated from input data size: 1
In order to change the average load for a reducer (in bytes):
set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
set mapred.reduce.tasks=<number>
Starting Job = job_201301221042_0008, Tracking URL = http://localhost:50030/jobdetails.jsp?jobid=job_201301221042_0008
Kill Command = /usr/local/hadoop/bin/../bin/hadoop job -Dmapred.job.tracker=localhost:9001 -kill job_201301221042_0008
2013-01-22 11:23:56,870 Stage-1 map = 0%, reduce = 0%
2013-01-22 11:24:02,902 Stage-1 map = 33%, reduce = 0%
2013-01-22 11:24:08,929 Stage-1 map = 67%, reduce = 0%
2013-01-22 11:24:11,944 Stage-1 map = 67%, reduce = 11%
2013-01-22 11:24:14,966 Stage-1 map = 100%, reduce = 11%
2013-01-22 11:24:21,007 Stage-1 map = 100%, reduce = 22%
2013-01-22 11:24:27,043 Stage-1 map = 100%, reduce = 67%
2013-01-22 11:24:30,056 Stage-1 map = 100%, reduce = 86%
2013-01-22 11:24:33,089 Stage-1 map = 100%, reduce = 100%
Ended Job = job_201301221042_0008
Loading data to table default.default__table02_table02_index__
Deleted hdfs://localhost:9000/user/hive/warehouse/default__table02_table02_index__
Table default.default__table02_table02_index__ stats: [num_partitions: 0, num_files: 1, num_rows: 0, total_size: 74701985]
OK
Time taken: 61.203 seconds
hive> dfs -ls /user/hive/warehouse/default*;
Found 1 items
-rw-r--r-- 3 hadoop supergroup 74701985 2013-01-22 11:24 /user/hive/warehouse/default__table02_table02_index__/000000_0
可以看到索引内存储的数据:
hive> select * from default__table02_table02_index__ limit 3;
OK
0 hdfs://localhost:9000/user/hive/warehouse/table02/000000_0 [0]
1 hdfs://localhost:9000/user/hive/warehouse/table02/000000_0 [352]
2 hdfs://localhost:9000/user/hive/warehouse/table02/000000_0 [704]
Time taken: 0.156 seconds
自己做一个索引文件测试:
hive> SET hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
hive> Insert overwrite directory "/tmp/table02_index_data" select `_bucketname`, `_offsets` from default__table02_table02_index__ where id =500000;
Total MapReduce jobs = 2
Launching Job 1 out of 2
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_201301221042_0009, Tracking URL = http://localhost:50030/jobdetails.jsp?jobid=job_201301221042_0009
Kill Command = /usr/local/hadoop/bin/../bin/hadoop job -Dmapred.job.tracker=localhost:9001 -kill job_201301221042_0009
2013-01-22 11:30:23,859 Stage-1 map = 0%, reduce = 0%
2013-01-22 11:30:26,872 Stage-1 map = 100%, reduce = 0%
2013-01-22 11:30:29,904 Stage-1 map = 100%, reduce = 100%
Ended Job = job_201301221042_0009
Ended Job = -489547412, job is filtered out (removed at runtime).
Launching Job 2 out of 2
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_201301221042_0010, Tracking URL = http://localhost:50030/jobdetails.jsp?jobid=job_201301221042_0010
Kill Command = /usr/local/hadoop/bin/../bin/hadoop job -Dmapred.job.tracker=localhost:9001 -kill job_201301221042_0010
2013-01-22 11:30:35,861 Stage-2 map = 0%, reduce = 0%
2013-01-22 11:30:38,882 Stage-2 map = 100%, reduce = 0%
2013-01-22 11:30:41,907 Stage-2 map = 100%, reduce = 100%
Ended Job = job_201301221042_0010
Moving data to: /tmp/table02_index_data
1 Rows loaded to /tmp/table02_index_data
OK
Time taken: 25.173 seconds
hive> select * from table02 where id =500000;
Total MapReduce jobs = 1
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_201301221042_0011, Tracking URL = http://localhost:50030/jobdetails.jsp?jobid=job_201301221042_0011
Kill Command = /usr/local/hadoop/bin/../bin/hadoop job -Dmapred.job.tracker=localhost:9001 -kill job_201301221042_0011
2013-01-22 11:31:06,055 Stage-1 map = 0%, reduce = 0%
2013-01-22 11:31:09,066 Stage-1 map = 33%, reduce = 0%
2013-01-22 11:31:12,083 Stage-1 map = 67%, reduce = 0%
2013-01-22 11:31:15,102 Stage-1 map = 100%, reduce = 0%
2013-01-22 11:31:18,127 Stage-1 map = 100%, reduce = 100%
Ended Job = job_201301221042_0011
OK
500000 A decade ago, many were predicting that Cooke, a New York City prodigy, would become a basketball shoe pitchman and would flaunt his wares and skills at All-Star weekends like the recent aerial show in Orlando, Fla. There was a time, however fleeting, when he was more heralded, or perhaps merely hyped, than any other high school player in America.
Time taken: 17.533 seconds
hive> Set hive.index.compact.file=/tmp/table02_index_data;
hive> Set hive.optimize.index.filter=false;
hive> Set hive.input.format=org.apache.hadoop.hive.ql.index.compact.HiveCompactIndexInputFormat;
hive> select * from table02 where id =500000;
Total MapReduce jobs = 1
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_201301221042_0012, Tracking URL = http://localhost:50030/jobdetails.jsp?jobid=job_201301221042_0012
Kill Command = /usr/local/hadoop/bin/../bin/hadoop job -Dmapred.job.tracker=localhost:9001 -kill job_201301221042_0012
2013-01-22 11:32:14,929 Stage-1 map = 0%, reduce = 0%
2013-01-22 11:32:17,942 Stage-1 map = 100%, reduce = 0%
2013-01-22 11:32:20,968 Stage-1 map = 100%, reduce = 100%
Ended Job = job_201301221042_0012
OK
500000 A decade ago, many were predicting that Cooke, a New York City prodigy, would become a basketball shoe pitchman and would flaunt his wares and skills at All-Star weekends like the recent aerial show in Orlando, Fla. There was a time, however fleeting, when he was more heralded, or perhaps merely hyped, than any other high school player in America.
Time taken: 11.222 seconds
总结:索引表的基本包含几列:1. 源表的索引列;2. _bucketname hdfs中文件地址 3. 索引列在hdfs文件中的偏移量。原理是通过记录索引列在HDFS中的偏移量,精准获取数据,避免全表扫描
复制代码
public interface HiveIndexHandler extends Configurable {
/**
* Determines whether this handler implements indexes by creating an index
* table.
*
* @return true if index creation implies creation of an index table in Hive;
* false if the index representation is not stored in a Hive table
*/
boolean usesIndexTable();
/**
* Requests that the handler validate an index definition and fill in
* additional information about its stored representation.
* @throw HiveException if the index definition is invalid with respect to
* either the base table or the supplied index table definition
*/
void analyzeIndexDefinition(
org.apache.hadoop.hive.metastore.api.Table baseTable,
org.apache.hadoop.hive.metastore.api.Index index,
org.apache.hadoop.hive.metastore.api.Table indexTable)
throws HiveException;
/**
* Requests that the handler generate a plan for building the index; the plan
* should read the base table and write out the index representation.
*/
List<Task<?>> generateIndexBuildTaskList(
org.apache.hadoop.hive.ql.metadata.Table baseTbl,
org.apache.hadoop.hive.metastore.api.Index index,
List<Partition> indexTblPartitions, List<Partition> baseTblPartitions,
org.apache.hadoop.hive.ql.metadata.Table indexTbl,
Set<ReadEntity> inputs, Set<WriteEntity> outputs)
throws HiveException;
}
复制代码
创建索引的时候,Hive首先调用接口的usesIndexTable方法,判断索引是否是已Hive Table的方式存储(默认的实现是存储在Hive中的)。然后调用analyzeIndexDefinition分析索引创建语句是否合法,如果没有问题将在元数据标IDXS中添加索引表,否则抛出异常。如果索引创建语句中使用with deferred rebuild,在执行alter index xxx_index on xxx rebuild时将调用generateIndexBuildTaskList获取Index的MapReduce,并执行为索引填充数据。
下面是借鉴别人设计的测试索引的例子:
首先生成测试数据:
复制代码
#! /bin/bash
#generating 350M raw data.
i=0
while [ $i -ne 1000000 ]
do
echo -e "$i\tA decade ago, many were predicting that Cooke, a New York City prodigy, would become a basketball shoe pitchman and would flaunt his wares and skills at All-Star weekends like the recent aerial show in Orlando, Fla. There was a time, however fleeting, when he was more heralded, or perhaps merely hyped, than any other high school player in America."
i=$(($i+1))
done
复制代码
创建测试表:
hive> create table table01( id int, name string)
> ROW FORMAT DELIMITED
> FIELDS TERMINATED BY '\t';
OK
Time taken: 0.371 seconds
hive> load data local inpath '/home/hadoop/hive_index_test/dual.txt' overwrite into table table01;
Copying data from file:/home/hadoop/hive_index_test/dual.txt
Copying file: file:/home/hadoop/hive_index_test/dual.txt
Loading data to table default.table01
Deleted hdfs://localhost:9000/user/hive/warehouse/table01
OK
Time taken: 13.492 seconds
hive> create table table02 as select id,name as text from table01;
Total MapReduce jobs = 2
Launching Job 1 out of 2
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_201301221042_0006, Tracking URL = http://localhost:50030/jobdetails.jsp?jobid=job_201301221042_0006
Kill Command = /usr/local/hadoop/bin/../bin/hadoop job -Dmapred.job.tracker=localhost:9001 -kill job_201301221042_0006
2013-01-22 11:21:19,639 Stage-1 map = 0%, reduce = 0%
2013-01-22 11:21:25,678 Stage-1 map = 33%, reduce = 0%
2013-01-22 11:21:37,754 Stage-1 map = 67%, reduce = 0%
2013-01-22 11:21:43,788 Stage-1 map = 100%, reduce = 0%
2013-01-22 11:21:46,828 Stage-1 map = 100%, reduce = 100%
Ended Job = job_201301221042_0006
Ended Job = -663277165, job is filtered out (removed at runtime).
Moving data to: hdfs://localhost:9000/tmp/hive-hadoop/hive_2013-01-22_11-21-13_661_2061036951988537032/-ext-10001
Moving data to: hdfs://localhost:9000/user/hive/warehouse/table02
1000000 Rows loaded to hdfs://localhost:9000/tmp/hive-hadoop/hive_2013-01-22_11-21-13_661_2061036951988537032/-ext-10000
OK
Time taken: 33.904 seconds
hive> dfs -ls /user/hive/warehouse/table02;
Found 6 items
-rw-r--r-- 3 hadoop supergroup 67109134 2013-01-22 11:21 /user/hive/warehouse/table02/000000_0
-rw-r--r-- 3 hadoop supergroup 67108860 2013-01-22 11:21 /user/hive/warehouse/table02/000001_0
-rw-r--r-- 3 hadoop supergroup 67108860 2013-01-22 11:21 /user/hive/warehouse/table02/000002_0
-rw-r--r-- 3 hadoop supergroup 67108860 2013-01-22 11:21 /user/hive/warehouse/table02/000003_0
-rw-r--r-- 3 hadoop supergroup 67108860 2013-01-22 11:21 /user/hive/warehouse/table02/000004_0
-rw-r--r-- 3 hadoop supergroup 21344316 2013-01-22 11:21 /user/hive/warehouse/table02/000005_0
hive> select * from table02 where id=500000;
Total MapReduce jobs = 1
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_201301221042_0007, Tracking URL = http://localhost:50030/jobdetails.jsp?jobid=job_201301221042_0007
Kill Command = /usr/local/hadoop/bin/../bin/hadoop job -Dmapred.job.tracker=localhost:9001 -kill job_201301221042_0007
2013-01-22 11:22:26,865 Stage-1 map = 0%, reduce = 0%
2013-01-22 11:22:28,884 Stage-1 map = 33%, reduce = 0%
2013-01-22 11:22:31,905 Stage-1 map = 67%, reduce = 0%
2013-01-22 11:22:34,921 Stage-1 map = 100%, reduce = 0%
2013-01-22 11:22:37,943 Stage-1 map = 100%, reduce = 100%
Ended Job = job_201301221042_0007
OK
500000 A decade ago, many were predicting that Cooke, a New York City prodigy, would become a basketball shoe pitchman and would flaunt his wares and skills at All-Star weekends like the recent aerial show in Orlando, Fla. There was a time, however fleeting, when he was more heralded, or perhaps merely hyped, than any other high school player in America.
Time taken: 18.551 seconds
创建索引:
hive> create index table02_index on table table02(id)
> as 'org.apache.hadoop.hive.ql.index.compact.CompactIndexHandler'
> with deferred rebuild;
OK
Time taken: 0.503 seconds
填充索引数据:
hive> alter index table02_index on table02 rebuild;
Total MapReduce jobs = 1
Launching Job 1 out of 1
Number of reduce tasks not specified. Estimated from input data size: 1
In order to change the average load for a reducer (in bytes):
set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
set mapred.reduce.tasks=<number>
Starting Job = job_201301221042_0008, Tracking URL = http://localhost:50030/jobdetails.jsp?jobid=job_201301221042_0008
Kill Command = /usr/local/hadoop/bin/../bin/hadoop job -Dmapred.job.tracker=localhost:9001 -kill job_201301221042_0008
2013-01-22 11:23:56,870 Stage-1 map = 0%, reduce = 0%
2013-01-22 11:24:02,902 Stage-1 map = 33%, reduce = 0%
2013-01-22 11:24:08,929 Stage-1 map = 67%, reduce = 0%
2013-01-22 11:24:11,944 Stage-1 map = 67%, reduce = 11%
2013-01-22 11:24:14,966 Stage-1 map = 100%, reduce = 11%
2013-01-22 11:24:21,007 Stage-1 map = 100%, reduce = 22%
2013-01-22 11:24:27,043 Stage-1 map = 100%, reduce = 67%
2013-01-22 11:24:30,056 Stage-1 map = 100%, reduce = 86%
2013-01-22 11:24:33,089 Stage-1 map = 100%, reduce = 100%
Ended Job = job_201301221042_0008
Loading data to table default.default__table02_table02_index__
Deleted hdfs://localhost:9000/user/hive/warehouse/default__table02_table02_index__
Table default.default__table02_table02_index__ stats: [num_partitions: 0, num_files: 1, num_rows: 0, total_size: 74701985]
OK
Time taken: 61.203 seconds
hive> dfs -ls /user/hive/warehouse/default*;
Found 1 items
-rw-r--r-- 3 hadoop supergroup 74701985 2013-01-22 11:24 /user/hive/warehouse/default__table02_table02_index__/000000_0
可以看到索引内存储的数据:
hive> select * from default__table02_table02_index__ limit 3;
OK
0 hdfs://localhost:9000/user/hive/warehouse/table02/000000_0 [0]
1 hdfs://localhost:9000/user/hive/warehouse/table02/000000_0 [352]
2 hdfs://localhost:9000/user/hive/warehouse/table02/000000_0 [704]
Time taken: 0.156 seconds
自己做一个索引文件测试:
hive> SET hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
hive> Insert overwrite directory "/tmp/table02_index_data" select `_bucketname`, `_offsets` from default__table02_table02_index__ where id =500000;
Total MapReduce jobs = 2
Launching Job 1 out of 2
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_201301221042_0009, Tracking URL = http://localhost:50030/jobdetails.jsp?jobid=job_201301221042_0009
Kill Command = /usr/local/hadoop/bin/../bin/hadoop job -Dmapred.job.tracker=localhost:9001 -kill job_201301221042_0009
2013-01-22 11:30:23,859 Stage-1 map = 0%, reduce = 0%
2013-01-22 11:30:26,872 Stage-1 map = 100%, reduce = 0%
2013-01-22 11:30:29,904 Stage-1 map = 100%, reduce = 100%
Ended Job = job_201301221042_0009
Ended Job = -489547412, job is filtered out (removed at runtime).
Launching Job 2 out of 2
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_201301221042_0010, Tracking URL = http://localhost:50030/jobdetails.jsp?jobid=job_201301221042_0010
Kill Command = /usr/local/hadoop/bin/../bin/hadoop job -Dmapred.job.tracker=localhost:9001 -kill job_201301221042_0010
2013-01-22 11:30:35,861 Stage-2 map = 0%, reduce = 0%
2013-01-22 11:30:38,882 Stage-2 map = 100%, reduce = 0%
2013-01-22 11:30:41,907 Stage-2 map = 100%, reduce = 100%
Ended Job = job_201301221042_0010
Moving data to: /tmp/table02_index_data
1 Rows loaded to /tmp/table02_index_data
OK
Time taken: 25.173 seconds
hive> select * from table02 where id =500000;
Total MapReduce jobs = 1
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_201301221042_0011, Tracking URL = http://localhost:50030/jobdetails.jsp?jobid=job_201301221042_0011
Kill Command = /usr/local/hadoop/bin/../bin/hadoop job -Dmapred.job.tracker=localhost:9001 -kill job_201301221042_0011
2013-01-22 11:31:06,055 Stage-1 map = 0%, reduce = 0%
2013-01-22 11:31:09,066 Stage-1 map = 33%, reduce = 0%
2013-01-22 11:31:12,083 Stage-1 map = 67%, reduce = 0%
2013-01-22 11:31:15,102 Stage-1 map = 100%, reduce = 0%
2013-01-22 11:31:18,127 Stage-1 map = 100%, reduce = 100%
Ended Job = job_201301221042_0011
OK
500000 A decade ago, many were predicting that Cooke, a New York City prodigy, would become a basketball shoe pitchman and would flaunt his wares and skills at All-Star weekends like the recent aerial show in Orlando, Fla. There was a time, however fleeting, when he was more heralded, or perhaps merely hyped, than any other high school player in America.
Time taken: 17.533 seconds
hive> Set hive.index.compact.file=/tmp/table02_index_data;
hive> Set hive.optimize.index.filter=false;
hive> Set hive.input.format=org.apache.hadoop.hive.ql.index.compact.HiveCompactIndexInputFormat;
hive> select * from table02 where id =500000;
Total MapReduce jobs = 1
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_201301221042_0012, Tracking URL = http://localhost:50030/jobdetails.jsp?jobid=job_201301221042_0012
Kill Command = /usr/local/hadoop/bin/../bin/hadoop job -Dmapred.job.tracker=localhost:9001 -kill job_201301221042_0012
2013-01-22 11:32:14,929 Stage-1 map = 0%, reduce = 0%
2013-01-22 11:32:17,942 Stage-1 map = 100%, reduce = 0%
2013-01-22 11:32:20,968 Stage-1 map = 100%, reduce = 100%
Ended Job = job_201301221042_0012
OK
500000 A decade ago, many were predicting that Cooke, a New York City prodigy, would become a basketball shoe pitchman and would flaunt his wares and skills at All-Star weekends like the recent aerial show in Orlando, Fla. There was a time, however fleeting, when he was more heralded, or perhaps merely hyped, than any other high school player in America.
Time taken: 11.222 seconds
总结:索引表的基本包含几列:1. 源表的索引列;2. _bucketname hdfs中文件地址 3. 索引列在hdfs文件中的偏移量。原理是通过记录索引列在HDFS中的偏移量,精准获取数据,避免全表扫描
发表评论
-
hive + hbase
2015-01-04 10:42 772环境配置: hadoop-2.0.0-cdh4.3.0 (4 ... -
hive 数据倾斜
2014-08-27 09:03 686链接:http://www.alidata.org/archi ... -
hive 分通总结
2014-08-27 08:42 575总结分析: 1. 定义了桶,但要生成桶的数据,只能是由其他表 ... -
explain hive index
2014-08-24 16:44 1147设置索引: 使用聚合索引优化groupby操作 hive> ... -
Hive 中内部表与外部表的区别与创建方法
2014-08-15 17:11 761分类: Hive 2013-12-07 11:56 ... -
hive map和reduce的控制
2014-08-15 16:14 623一、 控制hive任务中的map数: 1. 通 ... -
hive 压缩策略
2014-08-15 15:16 1767Hive使用的是Hadoop的文件 ... -
hive 在mysql中创建备用数据库
2014-08-15 09:21 880修改hive-site.xml <property> ... -
HIVE 窗口及分析函数
2014-08-11 16:21 1187HIVE 窗口及分析函数 使 ... -
hive 内置函数
2014-08-11 09:06 30681.sort_array(): sort_array(arra ... -
hive lateral view
2014-08-09 14:59 2025通过Lateral view可以方便的将UDTF得到的行转列的 ... -
hive数据的导出
2014-07-28 21:53 444在本博客的《Hive几种数据导入方式》文章中,谈到了Hive中 ... -
hive udaf
2014-07-25 16:11 752package com.lwz.udaf; import o ... -
hive自定义InputFormat
2014-07-25 09:13 861自定义分隔符 package com.lwz.inputf; ... -
HiveServer2连接ZooKeeper出现Too many connections问题的解决
2014-07-24 08:49 1764HiveServer2连接ZooKeeper出现Too man ... -
hive 常用命令
2014-07-17 22:22 6931.hive通过外部设置参数传入脚本中: hiv ... -
CouderaHadoop中hive的Hook扩展
2014-07-16 21:18 3333最近在做关于CDH4.3.0的hive封装,其中遇到了很多问题 ... -
利用SemanticAnalyzerHook回过滤不加分区条件的Hive查询
2014-07-16 16:43 1466我们Hadoop集群中将近百分之80的作业是通过Hive来提交 ... -
hive 的常用命令
2014-07-16 10:07 0设置、查看hive当前的角色: set sys ... -
hive 授权
2014-07-15 10:51 933Hive授权(Security配置) 博客分类: Hive分 ...
相关推荐
综上,从HBase的二级索引指南可以得出,在HBase中实现二级索引并不是一件简单的事情,需要深入理解HBase内部的存储机制、数据模型和API。实现二级索引需要额外的工作,比如索引的构建、维护和查询优化策略。开发者...
7. **Spark源码阅读**:通过阅读源码,可以深入理解Spark的内部实现,如Task调度、内存管理等。 8. **性能调优**:学习如何配置Spark参数以提高性能,如executor数量、内存大小等。 9. **Spark与Hadoop的集成**:...
在这个过程中,学生将经历大数据环境搭建、数据集分析、数据存储、数据预处理、用户画像构建以及机器学习模型的建立,以实现对广电用户行为的深入理解和预测。 1. 课程设计目的 本课程设计的目标在于提高学生对...
《PyPI官网下载:深入解析pyhiveapi-0.2.20.dev2.tar.gz》 PyPI(Python Package Index)是Python社区的核心资源...通过理解和使用这个库,我们可以更好地融入Python和Hadoop生态系统,实现高效的数据管理和分析任务。
- 《HBase应用架构》这本书中的实例和讲解,有助于读者深入理解HBase的使用和优化技巧。 通过以上内容,我们可以了解到HBase的核心特性和应用实践,对于开发者来说,掌握这些知识点是实现高效、稳定的大数据处理的...
单节点存储结构设计包括Journal文件和Index文件,通过分区和缓存机制,实现了快速的写入和查找操作。为了应对高并发场景,引入了异步预加载、读写共页的PLRU淘汰策略,并利用Future、Callback、React框架等技术减少...
总之,《HBase权威指南》涵盖了HBase的基础概念、核心机制、实战应用以及性能调优等方面,对于想要深入理解和使用HBase的开发者来说,是一份宝贵的参考资料。通过学习这本书,读者可以掌握如何利用HBase处理大数据...
- **培训课程**:参加官方或第三方提供的Trino培训课程,深入了解Trino的技术细节和高级特性。 通过上述内容的学习和实践,用户可以充分挖掘Trino的潜力,实现查询性能的最大化,为数据驱动的决策提供强有力的支持...
此外,通过具体的案例分析,如WordCount和Inverted Index等,进一步加深了对MapReduce编程模型的理解和应用能力。希望学员们能够在后续的学习过程中不断探索和实践,掌握更多的Hadoop高级技术和应用场景。
2. **总结化模式**:这一章讨论了几种常见的总结化模式,包括数值总结化(Numerical Summarizations)和倒排索引总结化(Inverted Index Summarizations)等。数值总结化模式主要用于对数值型数据进行统计和汇总,而倒排...