`
乡里伢崽
  • 浏览: 111952 次
  • 性别: Icon_minigender_1
  • 来自: 深圳
社区版块
存档分类
最新评论

深入了解Hive Index具体实现

    博客分类:
  • hive
 
阅读更多
索引是标准的数据库技术,hive 0.7版本之后支持索引。hive索引采用的不是'one size fites all'的索引实现方式,而是提供插入式接口,并且提供一个具体的索引实现作为参考。Hive的Index接口如下:

复制代码
public interface HiveIndexHandler extends Configurable {
  /**
   * Determines whether this handler implements indexes by creating an index
   * table.
   *
   * @return true if index creation implies creation of an index table in Hive;
   *         false if the index representation is not stored in a Hive table
   */
  boolean usesIndexTable();

  /**
   * Requests that the handler validate an index definition and fill in
   * additional information about its stored representation.

   * @throw HiveException if the index definition is invalid with respect to
   *        either the base table or the supplied index table definition
   */
  void analyzeIndexDefinition(
      org.apache.hadoop.hive.metastore.api.Table baseTable,
      org.apache.hadoop.hive.metastore.api.Index index,
      org.apache.hadoop.hive.metastore.api.Table indexTable)
      throws HiveException;

  /**
   * Requests that the handler generate a plan for building the index; the plan
   * should read the base table and write out the index representation.
*/
  List<Task<?>> generateIndexBuildTaskList(
      org.apache.hadoop.hive.ql.metadata.Table baseTbl,
      org.apache.hadoop.hive.metastore.api.Index index,
      List<Partition> indexTblPartitions, List<Partition> baseTblPartitions,
      org.apache.hadoop.hive.ql.metadata.Table indexTbl,
      Set<ReadEntity> inputs, Set<WriteEntity> outputs)
      throws HiveException;

}
复制代码


创建索引的时候,Hive首先调用接口的usesIndexTable方法,判断索引是否是已Hive Table的方式存储(默认的实现是存储在Hive中的)。然后调用analyzeIndexDefinition分析索引创建语句是否合法,如果没有问题将在元数据标IDXS中添加索引表,否则抛出异常。如果索引创建语句中使用with deferred rebuild,在执行alter index xxx_index on xxx rebuild时将调用generateIndexBuildTaskList获取Index的MapReduce,并执行为索引填充数据。

下面是借鉴别人设计的测试索引的例子:

首先生成测试数据:

复制代码
#! /bin/bash 
#generating 350M raw data. 
i=0 
while [ $i -ne 1000000 ] 
do 
        echo -e "$i\tA decade ago, many were predicting that Cooke, a New York City prodigy, would become a basketball shoe pitchman and would flaunt his wares and skills at All-Star weekends like the recent aerial show in Orlando, Fla. There was a time, however fleeting, when he was more heralded, or perhaps merely hyped, than any other high school player in America." 
        i=$(($i+1)) 
done
复制代码


创建测试表:
hive> create table table01( id int, name string) 
    > ROW FORMAT DELIMITED 
    > FIELDS TERMINATED BY '\t';
OK
Time taken: 0.371 seconds
hive> load data local inpath '/home/hadoop/hive_index_test/dual.txt' overwrite into table table01;
Copying data from file:/home/hadoop/hive_index_test/dual.txt
Copying file: file:/home/hadoop/hive_index_test/dual.txt
Loading data to table default.table01
Deleted hdfs://localhost:9000/user/hive/warehouse/table01
OK
Time taken: 13.492 seconds
hive> create table table02 as select id,name as text from table01;
Total MapReduce jobs = 2
Launching Job 1 out of 2
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_201301221042_0006, Tracking URL = http://localhost:50030/jobdetails.jsp?jobid=job_201301221042_0006
Kill Command = /usr/local/hadoop/bin/../bin/hadoop job  -Dmapred.job.tracker=localhost:9001 -kill job_201301221042_0006
2013-01-22 11:21:19,639 Stage-1 map = 0%,  reduce = 0%
2013-01-22 11:21:25,678 Stage-1 map = 33%,  reduce = 0%
2013-01-22 11:21:37,754 Stage-1 map = 67%,  reduce = 0%
2013-01-22 11:21:43,788 Stage-1 map = 100%,  reduce = 0%
2013-01-22 11:21:46,828 Stage-1 map = 100%,  reduce = 100%
Ended Job = job_201301221042_0006
Ended Job = -663277165, job is filtered out (removed at runtime).
Moving data to: hdfs://localhost:9000/tmp/hive-hadoop/hive_2013-01-22_11-21-13_661_2061036951988537032/-ext-10001
Moving data to: hdfs://localhost:9000/user/hive/warehouse/table02
1000000 Rows loaded to hdfs://localhost:9000/tmp/hive-hadoop/hive_2013-01-22_11-21-13_661_2061036951988537032/-ext-10000
OK
Time taken: 33.904 seconds
hive> dfs -ls /user/hive/warehouse/table02;
Found 6 items
-rw-r--r--   3 hadoop supergroup   67109134 2013-01-22 11:21 /user/hive/warehouse/table02/000000_0
-rw-r--r--   3 hadoop supergroup   67108860 2013-01-22 11:21 /user/hive/warehouse/table02/000001_0
-rw-r--r--   3 hadoop supergroup   67108860 2013-01-22 11:21 /user/hive/warehouse/table02/000002_0
-rw-r--r--   3 hadoop supergroup   67108860 2013-01-22 11:21 /user/hive/warehouse/table02/000003_0
-rw-r--r--   3 hadoop supergroup   67108860 2013-01-22 11:21 /user/hive/warehouse/table02/000004_0
-rw-r--r--   3 hadoop supergroup   21344316 2013-01-22 11:21 /user/hive/warehouse/table02/000005_0
hive> select * from table02 where id=500000;
Total MapReduce jobs = 1
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_201301221042_0007, Tracking URL = http://localhost:50030/jobdetails.jsp?jobid=job_201301221042_0007
Kill Command = /usr/local/hadoop/bin/../bin/hadoop job  -Dmapred.job.tracker=localhost:9001 -kill job_201301221042_0007
2013-01-22 11:22:26,865 Stage-1 map = 0%,  reduce = 0%
2013-01-22 11:22:28,884 Stage-1 map = 33%,  reduce = 0%
2013-01-22 11:22:31,905 Stage-1 map = 67%,  reduce = 0%
2013-01-22 11:22:34,921 Stage-1 map = 100%,  reduce = 0%
2013-01-22 11:22:37,943 Stage-1 map = 100%,  reduce = 100%
Ended Job = job_201301221042_0007
OK
500000    A decade ago, many were predicting that Cooke, a New York City prodigy, would become a basketball shoe pitchman and would flaunt his wares and skills at All-Star weekends like the recent aerial show in Orlando, Fla. There was a time, however fleeting, when he was more heralded, or perhaps merely hyped, than any other high school player in America.
Time taken: 18.551 seconds

创建索引:
hive> create index table02_index on table table02(id) 
    >     as 'org.apache.hadoop.hive.ql.index.compact.CompactIndexHandler' 
    >     with deferred rebuild;
OK
Time taken: 0.503 seconds

填充索引数据:
hive> alter index table02_index on table02 rebuild;
Total MapReduce jobs = 1
Launching Job 1 out of 1
Number of reduce tasks not specified. Estimated from input data size: 1
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
  set mapred.reduce.tasks=<number>
Starting Job = job_201301221042_0008, Tracking URL = http://localhost:50030/jobdetails.jsp?jobid=job_201301221042_0008
Kill Command = /usr/local/hadoop/bin/../bin/hadoop job  -Dmapred.job.tracker=localhost:9001 -kill job_201301221042_0008
2013-01-22 11:23:56,870 Stage-1 map = 0%,  reduce = 0%
2013-01-22 11:24:02,902 Stage-1 map = 33%,  reduce = 0%
2013-01-22 11:24:08,929 Stage-1 map = 67%,  reduce = 0%
2013-01-22 11:24:11,944 Stage-1 map = 67%,  reduce = 11%
2013-01-22 11:24:14,966 Stage-1 map = 100%,  reduce = 11%
2013-01-22 11:24:21,007 Stage-1 map = 100%,  reduce = 22%
2013-01-22 11:24:27,043 Stage-1 map = 100%,  reduce = 67%
2013-01-22 11:24:30,056 Stage-1 map = 100%,  reduce = 86%
2013-01-22 11:24:33,089 Stage-1 map = 100%,  reduce = 100%
Ended Job = job_201301221042_0008
Loading data to table default.default__table02_table02_index__
Deleted hdfs://localhost:9000/user/hive/warehouse/default__table02_table02_index__
Table default.default__table02_table02_index__ stats: [num_partitions: 0, num_files: 1, num_rows: 0, total_size: 74701985]
OK
Time taken: 61.203 seconds
hive> dfs -ls /user/hive/warehouse/default*;
Found 1 items
-rw-r--r--   3 hadoop supergroup   74701985 2013-01-22 11:24 /user/hive/warehouse/default__table02_table02_index__/000000_0

可以看到索引内存储的数据:
hive> select * from default__table02_table02_index__ limit 3;
OK
0    hdfs://localhost:9000/user/hive/warehouse/table02/000000_0    [0]
1    hdfs://localhost:9000/user/hive/warehouse/table02/000000_0    [352]
2    hdfs://localhost:9000/user/hive/warehouse/table02/000000_0    [704]
Time taken: 0.156 seconds

自己做一个索引文件测试:
hive> SET hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
hive> Insert overwrite directory "/tmp/table02_index_data" select `_bucketname`, `_offsets` from   default__table02_table02_index__ where id =500000; 
Total MapReduce jobs = 2
Launching Job 1 out of 2
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_201301221042_0009, Tracking URL = http://localhost:50030/jobdetails.jsp?jobid=job_201301221042_0009
Kill Command = /usr/local/hadoop/bin/../bin/hadoop job  -Dmapred.job.tracker=localhost:9001 -kill job_201301221042_0009
2013-01-22 11:30:23,859 Stage-1 map = 0%,  reduce = 0%
2013-01-22 11:30:26,872 Stage-1 map = 100%,  reduce = 0%
2013-01-22 11:30:29,904 Stage-1 map = 100%,  reduce = 100%
Ended Job = job_201301221042_0009
Ended Job = -489547412, job is filtered out (removed at runtime).
Launching Job 2 out of 2
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_201301221042_0010, Tracking URL = http://localhost:50030/jobdetails.jsp?jobid=job_201301221042_0010
Kill Command = /usr/local/hadoop/bin/../bin/hadoop job  -Dmapred.job.tracker=localhost:9001 -kill job_201301221042_0010
2013-01-22 11:30:35,861 Stage-2 map = 0%,  reduce = 0%
2013-01-22 11:30:38,882 Stage-2 map = 100%,  reduce = 0%
2013-01-22 11:30:41,907 Stage-2 map = 100%,  reduce = 100%
Ended Job = job_201301221042_0010
Moving data to: /tmp/table02_index_data
1 Rows loaded to /tmp/table02_index_data
OK
Time taken: 25.173 seconds
hive> select * from table02 where id =500000;
Total MapReduce jobs = 1
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_201301221042_0011, Tracking URL = http://localhost:50030/jobdetails.jsp?jobid=job_201301221042_0011
Kill Command = /usr/local/hadoop/bin/../bin/hadoop job  -Dmapred.job.tracker=localhost:9001 -kill job_201301221042_0011
2013-01-22 11:31:06,055 Stage-1 map = 0%,  reduce = 0%
2013-01-22 11:31:09,066 Stage-1 map = 33%,  reduce = 0%
2013-01-22 11:31:12,083 Stage-1 map = 67%,  reduce = 0%
2013-01-22 11:31:15,102 Stage-1 map = 100%,  reduce = 0%
2013-01-22 11:31:18,127 Stage-1 map = 100%,  reduce = 100%
Ended Job = job_201301221042_0011
OK
500000    A decade ago, many were predicting that Cooke, a New York City prodigy, would become a basketball shoe pitchman and would flaunt his wares and skills at All-Star weekends like the recent aerial show in Orlando, Fla. There was a time, however fleeting, when he was more heralded, or perhaps merely hyped, than any other high school player in America.
Time taken: 17.533 seconds
hive> Set hive.index.compact.file=/tmp/table02_index_data;
hive> Set hive.optimize.index.filter=false;
hive> Set hive.input.format=org.apache.hadoop.hive.ql.index.compact.HiveCompactIndexInputFormat; 
hive> select * from table02 where id =500000;
Total MapReduce jobs = 1
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_201301221042_0012, Tracking URL = http://localhost:50030/jobdetails.jsp?jobid=job_201301221042_0012
Kill Command = /usr/local/hadoop/bin/../bin/hadoop job  -Dmapred.job.tracker=localhost:9001 -kill job_201301221042_0012
2013-01-22 11:32:14,929 Stage-1 map = 0%,  reduce = 0%
2013-01-22 11:32:17,942 Stage-1 map = 100%,  reduce = 0%
2013-01-22 11:32:20,968 Stage-1 map = 100%,  reduce = 100%
Ended Job = job_201301221042_0012
OK
500000    A decade ago, many were predicting that Cooke, a New York City prodigy, would become a basketball shoe pitchman and would flaunt his wares and skills at All-Star weekends like the recent aerial show in Orlando, Fla. There was a time, however fleeting, when he was more heralded, or perhaps merely hyped, than any other high school player in America.
Time taken: 11.222 seconds


总结:索引表的基本包含几列:1. 源表的索引列;2. _bucketname hdfs中文件地址 3. 索引列在hdfs文件中的偏移量。原理是通过记录索引列在HDFS中的偏移量,精准获取数据,避免全表扫描
分享到:
评论

相关推荐

    HBase_Secondary_Index

    综上,从HBase的二级索引指南可以得出,在HBase中实现二级索引并不是一件简单的事情,需要深入理解HBase内部的存储机制、数据模型和API。实现二级索引需要额外的工作,比如索引的构建、维护和查询优化策略。开发者...

    spark

    7. **Spark源码阅读**:通过阅读源码,可以深入理解Spark的内部实现,如Task调度、内存管理等。 8. **性能调优**:学习如何配置Spark参数以提高性能,如executor数量、内存大小等。 9. **Spark与Hadoop的集成**:...

    数据工程综合课设报告-创建广电用户画像

    在这个过程中,学生将经历大数据环境搭建、数据集分析、数据存储、数据预处理、用户画像构建以及机器学习模型的建立,以实现对广电用户行为的深入理解和预测。 1. 课程设计目的 本课程设计的目标在于提高学生对...

    PyPI 官网下载 | pyhiveapi-0.2.20.dev2.tar.gz

    《PyPI官网下载:深入解析pyhiveapi-0.2.20.dev2.tar.gz》 PyPI(Python Package Index)是Python社区的核心资源...通过理解和使用这个库,我们可以更好地融入Python和Hadoop生态系统,实现高效的数据管理和分析任务。

    HBase应用架构

    - 《HBase应用架构》这本书中的实例和讲解,有助于读者深入理解HBase的使用和优化技巧。 通过以上内容,我们可以了解到HBase的核心特性和应用实践,对于开发者来说,掌握这些知识点是实现高效、稳定的大数据处理的...

    高可用分布式流数据存储架构设计.pdf

    单节点存储结构设计包括Journal文件和Index文件,通过分区和缓存机制,实现了快速的写入和查找操作。为了应对高并发场景,引入了异步预加载、读写共页的PLRU淘汰策略,并利用Future、Callback、React框架等技术减少...

    HBase权威指南

    总之,《HBase权威指南》涵盖了HBase的基础概念、核心机制、实战应用以及性能调优等方面,对于想要深入理解和使用HBase的开发者来说,是一份宝贵的参考资料。通过学习这本书,读者可以掌握如何利用HBase处理大数据...

    trino优化宝典,trino优化宝典

    - **培训课程**:参加官方或第三方提供的Trino培训课程,深入了解Trino的技术细节和高级特性。 通过上述内容的学习和实践,用户可以充分挖掘Trino的潜力,实现查询性能的最大化,为数据驱动的决策提供强有力的支持...

    hadoop教学课程

    此外,通过具体的案例分析,如WordCount和Inverted Index等,进一步加深了对MapReduce编程模型的理解和应用能力。希望学员们能够在后续的学习过程中不断探索和实践,掌握更多的Hadoop高级技术和应用场景。

    [MapReduce.Design.Patterns(2012.11)].Donald.M

    2. **总结化模式**:这一章讨论了几种常见的总结化模式,包括数值总结化(Numerical Summarizations)和倒排索引总结化(Inverted Index Summarizations)等。数值总结化模式主要用于对数值型数据进行统计和汇总,而倒排...

Global site tag (gtag.js) - Google Analytics