`

布隆过滤器(Bloom Filter)Java实现

阅读更多
布隆过滤器原理很简单:就是把一个字符串哈希成一个整数key,然后选取一个很长的比特序列,开始都是0,在key把此位置的0变为1;下次进来一个字符串,哈希之后的值key,如果在此比特位上的值也是1,那么就说明这个字符串存在了。
如果按照上面的做法,那就和哈希算法没有什么区别了,哈希算法还有重复的呢。
布隆过滤器是将一个字符串哈希成多个key,我还是按照书上的说吧。
先建立一个16亿二进制常量,然后将这16亿个二进制位全部置0。对于每个字符串,用8个不同的随机产生器(F1,F2,.....,F8)产生8个信息指纹(f1,f2,....,f8).再用一个随机数产生器G把这八个信息指纹映射到1到16亿中的8个自然数g1,g2,...,g8。现在把这8个位置的二进制位全部变为1。这样一个布隆过滤器就建好了。
那么如何检测一个字符串是否已经存在了呢?
现在用8个随机数产生器(F1,F2,...,F8)对这个字符串产生8个信息指纹s1,s2,...,s8,然后将这8个信息指纹对应到布隆过滤器的8个二进制位,分别是T1,T2,...,T8.如果字符串存在,那么显然T1,T2,...,T8对应的二进制位都应该是1。就是这样来判断字符串是否已经存在的。
其实布隆过滤器就是对哈希算法的一个扩展,既然本质是哈希,那么就肯定会有不足,也就是说,肯定会有误判,一个字符串明明没有出现过而布隆过滤器判断出现了,虽然可能性很小,但是确实存在。
那么如何减少这种概率呢,首先可以想到的是如果将8个信息指纹扩展到16个错误的概率肯定会降低,但是也要考虑到,这样的话,那么一个布隆过滤器所能存储的字符串数量也降低了1倍;另外就是选取很好的哈希函数,对字符串的哈希方法有很多种,其中不乏很好的哈希函数。
布隆过滤器主要运用在过滤恶意网址用的,将所有的恶意网址建立在一个布隆过滤器上,然后对用户的访问的网址进行检测,如果在恶意网址中那么就通知用户。这样的话,我们还可以对一些常出现判断错误的网址设定一个白名单,然后对出现判断存在的网址再和白名单中的网址进行匹配,如果在白名单中,那么就放行。当然这个白名单不能太大,也不会太大,布隆过滤器错误的概率是很小的。有兴趣的读者可以去查阅,布隆过滤器的错误率。
下面给出Java版的布隆过滤器源码:

import java.util.BitSet;

/**
 *
 * @author xkey
 */
public class BloomFilter {

    private static final int DEFAULT_SIZE = 2 << 24;//布隆过滤器的比特长度
    private static final int[] seeds = {3,5,7, 11, 13, 31, 37, 61};//这里要选取质数,能很好的降低错误率
    private static BitSet bits = new BitSet(DEFAULT_SIZE);
    private static SimpleHash[] func = new SimpleHash[seeds.length];

    public static void addValue(String value)
    {
        for(SimpleHash f : func)//将字符串value哈希为8个或多个整数,然后在这些整数的bit上变为1
            bits.set(f.hash(value),true);
    }
    
    public static void add(String value)
    {
        if(value != null) addValue(value);
    }
    
    public static boolean contains(String value)
    {
        if(value == null) return false;
        boolean ret = true;
        for(SimpleHash f : func)//这里其实没必要全部跑完,只要一次ret==false那么就不包含这个字符串
            ret = ret && bits.get(f.hash(value));
        return ret;
    }
    
    public static void main(String[] args) {
        String value = "xkeyideal@gmail.com";
        for (int i = 0; i < seeds.length; i++) {
            func[i] = new SimpleHash(DEFAULT_SIZE, seeds[i]);
        }
        add(value);
        System.out.println(contains(value));
    }
}

class SimpleHash {//这玩意相当于C++中的结构体

    private int cap;
    private int seed;

    public  SimpleHash(int cap, int seed) {
        this.cap = cap;
        this.seed = seed;
    }

    public int hash(String value) {//字符串哈希,选取好的哈希函数很重要
        int result = 0;
        int len = value.length();
        for (int i = 0; i < len; i++) {
            result = seed * result + value.charAt(i);
        }
        return (cap - 1) & result;
    }
}
分享到:
评论

相关推荐

    布隆过滤器BloomFilters的一个简单Java库

    布隆过滤器(Bloom Filter)是一种空间效率极高的概率型数据结构,用于判断一个元素是否可能在一个集合中。在Java开发中,特别是在处理大数据、内存限制或需要快速查询是否存在某个元素的场景下,布隆过滤器是一个...

    bloom filter(C#版自制布隆过滤器)

    C# 版本的布隆过滤器实现了这一概念,通过使用八种不同的哈希函数来提高准确性和减少冲突。 布隆过滤器的基本原理是将所有可能存在的元素映射到一个固定大小的位数组(bit array)上。这个位数组最初全部设置为0。...

    java实现的布隆过滤器算法

    在提供的压缩包文件`Bloom Filter`中,可能包含了具体的Java实现代码,你可以通过阅读和分析这些代码来深入理解布隆过滤器的工作原理和Java实现细节。此外,还可以通过测试不同参数组合下的性能,进一步了解布隆过滤...

    布隆过滤器-BloomFilter

    在Java中,实现布隆过滤器可以使用开源库如Guava或者自定义实现。例如,`BloomFilter.java`和`MyBloomFilter.java`可能是两个不同的实现版本。自定义实现通常包括以下几个关键部分: 1. **位数组(Bit Array)**:...

    利用Java手写一个布隆过滤器Bloom Filter

    布隆过滤器是一种数据结构,主要用于判断一个元素是否可能在一个集合中存在。它可以在插入和查询数据时快速地判断一个元素是否可能在这个集合中,比如在缓存中查询一个元素是否存在。 它的原理是使用多个哈希函数对...

    布隆过滤器C源码-bloomfilter.rar

    例如,`bf_create(size_t capacity, uint8_t num_hashes)`用于创建一个布隆过滤器,`bf_insert(bloom_filter* filter, const void* item)`用于插入元素,`bf_query(bloom_filter* filter, const void* item)`用于...

    硬核 - Redis 布隆(Bloom Filter)过滤器原理与实战.doc

    * 邮件过滤,使用布隆过滤器实现邮件黑名单过滤 * 爬虫爬过的网站过滤,爬过的网站不再爬取 * 推荐过的新闻不再推荐 * 去重问题,例如在明日头条APP中,推荐给用户的内容不会重复 Redis集成布隆过滤器需要使用Redis...

    Go-布隆过滤器的一个Go实现参考bloomfilter.js

    `bloomfilter.js`可能是JavaScript版本的布隆过滤器实现,而"Go-布隆过滤器的一个Go实现参考bloomfilter.js"则表明该Go版本的实现是借鉴了JavaScript版本的设计思路或代码结构。 Go实现布隆过滤器的关键组件包括: ...

    【技术分享】Bloomfilter布隆过滤器.pptx

    Redisson是一个Java客户端,它不仅支持Redis的各种功能,还包含了布隆过滤器的实现。通过使用Redisson,用户可以在分布式环境中利用布隆过滤器,提高系统的可扩展性和效率。 总的来说,布隆过滤器是一种在空间效率...

    bloom filter布隆过滤器学习资料大全

    布隆过滤器(Bloom Filter)是一种空间效率极高...通过这个“bloom filter布隆过滤器学习资料大全”,你可以深入研究布隆过滤器的理论、算法实现以及在不同场景下的应用实例,提升对这一重要数据结构的理解和应用能力。

    布隆过滤器之C++实现

    C++实现的布隆过滤器,其中使用到的bitset也是自己简单实现的一个BitContainer。可以处理千万条到亿条记录的存在性判断。做成dll可以在很多场合使用,如自己写爬虫,要判断一个url是否已经访问过,判断一个单词是否...

    Go-一个简单的golang布隆过滤器

    你可以通过开源项目`bloomfilter-master`进一步学习Go语言实现布隆过滤器的具体代码,这将帮助理解其实现细节和优化技巧。 总之,Go语言的布隆过滤器是一种实用的数据结构,尤其在大数据场景下,它以牺牲一定的...

    布隆过滤器(利用布隆过滤器实现文字的嵌入和查找功能)

    布隆过滤器,大家学过数据结构的应该都清楚,一般的字典树要实现嵌入和查找都内存的消耗非常大,布隆过滤器有BloomFilter,string, BKDRHash, APHash, DJBHash&gt; bf五个参数你要查找的元素个数,查找元素类型,三个...

    Java版本的BloomFilter (布隆过滤器)

    **布隆过滤器(Bloom Filter)**是一种空间效率极高的概率型数据结构,用于测试一个元素是否在一个集合中。由Burton Howard Bloom在1970年提出,主要用于节省存储空间,尤其在大数据场景下,它能有效地解决大规模...

    布隆过滤器的实现,以及测试用例,简单易懂并做了一些注释

    下面将详细介绍布隆过滤器的原理、实现及测试用例。 ### 布隆过滤器原理 1. **基本结构**:布隆过滤器是一个很长的二进制数组和几个独立的哈希函数。数组初始全为0,哈希函数是随机且独立的。 2. **插入操作**:...

    介绍Bloom Filter(布隆过滤器)原理、实现及具体应用

    布隆过滤器(Bloom Filter)是一种空间效率极高的概率型数据结构,用于判断一个元素是否可能在一个集合中。它可能会误判,但不会漏判,即可能存在假阳性(False Positive),但绝不会有假阴性(False Negative)。...

    Bloom_filter_(C).zip_bloom_bloom filter_c++布隆_布隆过滤器

    这个压缩包文件"Bloom_filter_(C).zip"包含了一个C++版本的布隆过滤器实现,它具有简单易学、易用的特点。 布隆过滤器的基本原理是通过多个哈希函数将元素映射到一个固定大小的位数组中。这些哈希函数是独立且随机...

    Java 实现的高性能布隆过滤器!.zip

    Java 实现的高性能布隆过滤器!.zip,Advanced Bloom Filter Based Algorithms for Efficient Approximate Data De-Duplication in Streams

    布隆过滤器python库

    在Python中,有多个库实现了布隆过滤器,其中一个就是我们这里提到的"python-bloomfilter-master"。 这个Python库提供了对布隆过滤器的简单接口,使得开发者可以方便地在项目中应用布隆过滤器。安装过程非常直观,...

    java-bloomfilter

    Java 中实现布隆过滤器,通常可以使用开源库Guava提供的`com.google.common.hash.BloomFilter`类。Guava的布隆过滤器提供了灵活的参数配置,包括期望元素数量(expectedInsertions)和错误率(fpp,False Positive ...

Global site tag (gtag.js) - Google Analytics