注:写了一系列的结构体的分析的文章,在这里列一个列表:
FFMPEG结构体分析:AVFrame
FFMPEG结构体分析:AVFormatContext
FFMPEG结构体分析:AVCodecContext
FFMPEG结构体分析:AVIOContext
FFMPEG结构体分析:AVCodec
FFMPEG结构体分析:AVStream
FFMPEG结构体分析:AVPacket
FFMPEG有几个最重要的结构体,包含了解协议,解封装,解码操作,此前已经进行过分析:
在此不再详述,其中AVFrame是包含码流参数较多的结构体。本文将会详细分析一下该结构体里主要变量的含义和作用。
首先看一下结构体的定义(位于avcodec.h):
/* *雷霄骅 *leixiaohua1020@126.com *中国传媒大学/数字电视技术 */ /** * Audio Video Frame. * New fields can be added to the end of AVFRAME with minor version * bumps. Similarly fields that are marked as to be only accessed by * av_opt_ptr() can be reordered. This allows 2 forks to add fields * without breaking compatibility with each other. * Removal, reordering and changes in the remaining cases require * a major version bump. * sizeof(AVFrame) must not be used outside libavcodec. */ typedef struct AVFrame { #define AV_NUM_DATA_POINTERS 8 /**图像数据 * pointer to the picture/channel planes. * This might be different from the first allocated byte * - encoding: Set by user * - decoding: set by AVCodecContext.get_buffer() */ uint8_t *data[AV_NUM_DATA_POINTERS]; /** * Size, in bytes, of the data for each picture/channel plane. * * For audio, only linesize[0] may be set. For planar audio, each channel * plane must be the same size. * * - encoding: Set by user * - decoding: set by AVCodecContext.get_buffer() */ int linesize[AV_NUM_DATA_POINTERS]; /** * pointers to the data planes/channels. * * For video, this should simply point to data[]. * * For planar audio, each channel has a separate data pointer, and * linesize[0] contains the size of each channel buffer. * For packed audio, there is just one data pointer, and linesize[0] * contains the total size of the buffer for all channels. * * Note: Both data and extended_data will always be set by get_buffer(), * but for planar audio with more channels that can fit in data, * extended_data must be used by the decoder in order to access all * channels. * * encoding: unused * decoding: set by AVCodecContext.get_buffer() */ uint8_t **extended_data; /**宽高 * width and height of the video frame * - encoding: unused * - decoding: Read by user. */ int width, height; /** * number of audio samples (per channel) described by this frame * - encoding: Set by user * - decoding: Set by libavcodec */ int nb_samples; /** * format of the frame, -1 if unknown or unset * Values correspond to enum AVPixelFormat for video frames, * enum AVSampleFormat for audio) * - encoding: unused * - decoding: Read by user. */ int format; /**是否是关键帧 * 1 -> keyframe, 0-> not * - encoding: Set by libavcodec. * - decoding: Set by libavcodec. */ int key_frame; /**帧类型(I,B,P) * Picture type of the frame, see ?_TYPE below. * - encoding: Set by libavcodec. for coded_picture (and set by user for input). * - decoding: Set by libavcodec. */ enum AVPictureType pict_type; /** * pointer to the first allocated byte of the picture. Can be used in get_buffer/release_buffer. * This isn't used by libavcodec unless the default get/release_buffer() is used. * - encoding: * - decoding: */ uint8_t *base[AV_NUM_DATA_POINTERS]; /** * sample aspect ratio for the video frame, 0/1 if unknown/unspecified * - encoding: unused * - decoding: Read by user. */ AVRational sample_aspect_ratio; /** * presentation timestamp in time_base units (time when frame should be shown to user) * If AV_NOPTS_VALUE then frame_rate = 1/time_base will be assumed. * - encoding: MUST be set by user. * - decoding: Set by libavcodec. */ int64_t pts; /** * reordered pts from the last AVPacket that has been input into the decoder * - encoding: unused * - decoding: Read by user. */ int64_t pkt_pts; /** * dts from the last AVPacket that has been input into the decoder * - encoding: unused * - decoding: Read by user. */ int64_t pkt_dts; /** * picture number in bitstream order * - encoding: set by * - decoding: Set by libavcodec. */ int coded_picture_number; /** * picture number in display order * - encoding: set by * - decoding: Set by libavcodec. */ int display_picture_number; /** * quality (between 1 (good) and FF_LAMBDA_MAX (bad)) * - encoding: Set by libavcodec. for coded_picture (and set by user for input). * - decoding: Set by libavcodec. */ int quality; /** * is this picture used as reference * The values for this are the same as the MpegEncContext.picture_structure * variable, that is 1->top field, 2->bottom field, 3->frame/both fields. * Set to 4 for delayed, non-reference frames. * - encoding: unused * - decoding: Set by libavcodec. (before get_buffer() call)). */ int reference; /**QP表 * QP table * - encoding: unused * - decoding: Set by libavcodec. */ int8_t *qscale_table; /** * QP store stride * - encoding: unused * - decoding: Set by libavcodec. */ int qstride; /** * */ int qscale_type; /**跳过宏块表 * mbskip_table[mb]>=1 if MB didn't change * stride= mb_width = (width+15)>>4 * - encoding: unused * - decoding: Set by libavcodec. */ uint8_t *mbskip_table; /**运动矢量表 * motion vector table * @code * example: * int mv_sample_log2= 4 - motion_subsample_log2; * int mb_width= (width+15)>>4; * int mv_stride= (mb_width << mv_sample_log2) + 1; * motion_val[direction][x + y*mv_stride][0->mv_x, 1->mv_y]; * @endcode * - encoding: Set by user. * - decoding: Set by libavcodec. */ int16_t (*motion_val[2])[2]; /**宏块类型表 * macroblock type table * mb_type_base + mb_width + 2 * - encoding: Set by user. * - decoding: Set by libavcodec. */ uint32_t *mb_type; /**DCT系数 * DCT coefficients * - encoding: unused * - decoding: Set by libavcodec. */ short *dct_coeff; /**参考帧列表 * motion reference frame index * the order in which these are stored can depend on the codec. * - encoding: Set by user. * - decoding: Set by libavcodec. */ int8_t *ref_index[2]; /** * for some private data of the user * - encoding: unused * - decoding: Set by user. */ void *opaque; /** * error * - encoding: Set by libavcodec. if flags&CODEC_FLAG_PSNR. * - decoding: unused */ uint64_t error[AV_NUM_DATA_POINTERS]; /** * type of the buffer (to keep track of who has to deallocate data[*]) * - encoding: Set by the one who allocates it. * - decoding: Set by the one who allocates it. * Note: User allocated (direct rendering) & internal buffers cannot coexist currently. */ int type; /** * When decoding, this signals how much the picture must be delayed. * extra_delay = repeat_pict / (2*fps) * - encoding: unused * - decoding: Set by libavcodec. */ int repeat_pict; /** * The content of the picture is interlaced. * - encoding: Set by user. * - decoding: Set by libavcodec. (default 0) */ int interlaced_frame; /** * If the content is interlaced, is top field displayed first. * - encoding: Set by user. * - decoding: Set by libavcodec. */ int top_field_first; /** * Tell user application that palette has changed from previous frame. * - encoding: ??? (no palette-enabled encoder yet) * - decoding: Set by libavcodec. (default 0). */ int palette_has_changed; /** * codec suggestion on buffer type if != 0 * - encoding: unused * - decoding: Set by libavcodec. (before get_buffer() call)). */ int buffer_hints; /** * Pan scan. * - encoding: Set by user. * - decoding: Set by libavcodec. */ AVPanScan *pan_scan; /** * reordered opaque 64bit (generally an integer or a double precision float * PTS but can be anything). * The user sets AVCodecContext.reordered_opaque to represent the input at * that time, * the decoder reorders values as needed and sets AVFrame.reordered_opaque * to exactly one of the values provided by the user through AVCodecContext.reordered_opaque * @deprecated in favor of pkt_pts * - encoding: unused * - decoding: Read by user. */ int64_t reordered_opaque; /** * hardware accelerator private data (FFmpeg-allocated) * - encoding: unused * - decoding: Set by libavcodec */ void *hwaccel_picture_private; /** * the AVCodecContext which ff_thread_get_buffer() was last called on * - encoding: Set by libavcodec. * - decoding: Set by libavcodec. */ struct AVCodecContext *owner; /** * used by multithreading to store frame-specific info * - encoding: Set by libavcodec. * - decoding: Set by libavcodec. */ void *thread_opaque; /** * log2 of the size of the block which a single vector in motion_val represents: * (4->16x16, 3->8x8, 2-> 4x4, 1-> 2x2) * - encoding: unused * - decoding: Set by libavcodec. */ uint8_t motion_subsample_log2; /**(音频)采样率 * Sample rate of the audio data. * * - encoding: unused * - decoding: read by user */ int sample_rate; /** * Channel layout of the audio data. * * - encoding: unused * - decoding: read by user. */ uint64_t channel_layout; /** * frame timestamp estimated using various heuristics, in stream time base * Code outside libavcodec should access this field using: * av_frame_get_best_effort_timestamp(frame) * - encoding: unused * - decoding: set by libavcodec, read by user. */ int64_t best_effort_timestamp; /** * reordered pos from the last AVPacket that has been input into the decoder * Code outside libavcodec should access this field using: * av_frame_get_pkt_pos(frame) * - encoding: unused * - decoding: Read by user. */ int64_t pkt_pos; /** * duration of the corresponding packet, expressed in * AVStream->time_base units, 0 if unknown. * Code outside libavcodec should access this field using: * av_frame_get_pkt_duration(frame) * - encoding: unused * - decoding: Read by user. */ int64_t pkt_duration; /** * metadata. * Code outside libavcodec should access this field using: * av_frame_get_metadata(frame) * - encoding: Set by user. * - decoding: Set by libavcodec. */ AVDictionary *metadata; /** * decode error flags of the frame, set to a combination of * FF_DECODE_ERROR_xxx flags if the decoder produced a frame, but there * were errors during the decoding. * Code outside libavcodec should access this field using: * av_frame_get_decode_error_flags(frame) * - encoding: unused * - decoding: set by libavcodec, read by user. */ int decode_error_flags; #define FF_DECODE_ERROR_INVALID_BITSTREAM 1 #define FF_DECODE_ERROR_MISSING_REFERENCE 2 /** * number of audio channels, only used for audio. * Code outside libavcodec should access this field using: * av_frame_get_channels(frame) * - encoding: unused * - decoding: Read by user. */ int64_t channels; } AVFrame;
AVFrame结构体一般用于存储原始数据(即非压缩数据,例如对视频来说是YUV,RGB,对音频来说是PCM),此外还包含了一些相关的信息。比如说,解码的时候存储了宏块类型表,QP表,运动矢量表等数据。编码的时候也存储了相关的数据。因此在使用FFMPEG进行码流分析的时候,AVFrame是一个很重要的结构体。
下面看几个主要变量的作用(在这里考虑解码的情况):
uint8_t *data[AV_NUM_DATA_POINTERS]:解码后原始数据(对视频来说是YUV,RGB,对音频来说是PCM)
int linesize[AV_NUM_DATA_POINTERS]:data的大小
int width, height:视频帧宽和高(1920x1080,1280x720...)
int nb_samples:音频的一个AVFrame中可能包含多个音频帧,在此标记包含了几个
int format:解码后原始数据类型(YUV420,YUV422,RGB24...)
int key_frame:是否是关键帧
enum AVPictureType pict_type:帧类型(I,B,P...)
AVRational sample_aspect_ratio:宽高比(16:9,4:3...)
int64_t pts:显示时间戳
int coded_picture_number:编码帧序号
int display_picture_number:显示帧序号
int8_t *qscale_table:QP表
uint8_t *mbskip_table:跳过宏块表
int16_t (*motion_val[2])[2]:运动矢量表
uint32_t *mb_type:宏块类型表
short *dct_coeff:DCT系数,这个没有提取过
int8_t *ref_index[2]:运动估计参考帧列表(貌似H.264这种比较新的标准才会涉及到多参考帧)
int interlaced_frame:是否是隔行扫描
uint8_t motion_subsample_log2:一个宏块中的运动矢量采样个数,取log的
其他的变量不再一一列举,源代码中都有详细的说明。在这里重点分析一下几个需要一定的理解的变量:
1.data[]
对于packed格式的数据(例如RGB24),会存到data[0]里面。
对于planar格式的数据(例如YUV420P),则会分开成data[0],data[1],data[2]...(YUV420P中data[0]存Y,data[1]存U,data[2]存V)
具体参见:FFMPEG 实现 YUV,RGB各种图像原始数据之间的转换(swscale)
2.pict_type
包含以下类型:
enum AVPictureType { AV_PICTURE_TYPE_NONE = 0, ///< Undefined AV_PICTURE_TYPE_I, ///< Intra AV_PICTURE_TYPE_P, ///< Predicted AV_PICTURE_TYPE_B, ///< Bi-dir predicted AV_PICTURE_TYPE_S, ///< S(GMC)-VOP MPEG4 AV_PICTURE_TYPE_SI, ///< Switching Intra AV_PICTURE_TYPE_SP, ///< Switching Predicted AV_PICTURE_TYPE_BI, ///< BI type };
3.sample_aspect_ratio
宽高比是一个分数,FFMPEG中用AVRational表达分数:
/** * rational number numerator/denominator */ typedef struct AVRational{ int num; ///< numerator int den; ///< denominator } AVRational;
4.qscale_table
QP表指向一块内存,里面存储的是每个宏块的QP值。宏块的标号是从左往右,一行一行的来的。每个宏块对应1个QP。
qscale_table[0]就是第1行第1列宏块的QP值;qscale_table[1]就是第1行第2列宏块的QP值;qscale_table[2]就是第1行第3列宏块的QP值。以此类推...
宏块的个数用下式计算:
注:宏块大小是16x16的。
每行宏块数:
int mb_stride = pCodecCtx->width/16+1
宏块的总数:
int mb_sum = ((pCodecCtx->height+15)>>4)*(pCodecCtx->width/16+1)
5.motion_subsample_log2
1个运动矢量所能代表的画面大小(用宽或者高表示,单位是像素),注意,这里取了log2。
代码注释中给出以下数据:
4->16x16, 3->8x8, 2-> 4x4, 1-> 2x2
即1个运动矢量代表16x16的画面的时候,该值取4;1个运动矢量代表8x8的画面的时候,该值取3...以此类推
6.motion_val
运动矢量表存储了一帧视频中的所有运动矢量。
该值的存储方式比较特别:
int16_t (*motion_val[2])[2];
为了弄清楚该值究竟是怎么存的,花了我好一阵子功夫...
注释中给了一段代码:
int mv_sample_log2= 4 - motion_subsample_log2; int mb_width= (width+15)>>4; int mv_stride= (mb_width << mv_sample_log2) + 1; motion_val[direction][x + y*mv_stride][0->mv_x, 1->mv_y];
大概知道了该数据的结构:
1.首先分为两个列表L0和L1
2.每个列表(L0或L1)存储了一系列的MV(每个MV对应一个画面,大小由motion_subsample_log2决定)
3.每个MV分为横坐标和纵坐标(x,y)
注意,在FFMPEG中MV和MB在存储的结构上是没有什么关联的,第1个MV是屏幕上左上角画面的MV(画面的大小取决于motion_subsample_log2),第2个MV是屏幕上第1行第2列的画面的MV,以此类推。因此在一个宏块(16x16)的运动矢量很有可能如下图所示(line代表一行运动矢量的个数):
//例如8x8划分的运动矢量与宏块的关系: //------------------------- //| | | //|mv[x] |mv[x+1] | //------------------------- //| | | //|mv[x+line]|mv[x+line+1]| //-------------------------
7.mb_type
宏块类型表存储了一帧视频中的所有宏块的类型。其存储方式和QP表差不多。只不过其是uint32类型的,而QP表是uint8类型的。每个宏块对应一个宏块类型变量。
宏块类型如下定义所示:
//The following defines may change, don't expect compatibility if you use them. #define MB_TYPE_INTRA4x4 0x0001 #define MB_TYPE_INTRA16x16 0x0002 //FIXME H.264-specific #define MB_TYPE_INTRA_PCM 0x0004 //FIXME H.264-specific #define MB_TYPE_16x16 0x0008 #define MB_TYPE_16x8 0x0010 #define MB_TYPE_8x16 0x0020 #define MB_TYPE_8x8 0x0040 #define MB_TYPE_INTERLACED 0x0080 #define MB_TYPE_DIRECT2 0x0100 //FIXME #define MB_TYPE_ACPRED 0x0200 #define MB_TYPE_GMC 0x0400 #define MB_TYPE_SKIP 0x0800 #define MB_TYPE_P0L0 0x1000 #define MB_TYPE_P1L0 0x2000 #define MB_TYPE_P0L1 0x4000 #define MB_TYPE_P1L1 0x8000 #define MB_TYPE_L0 (MB_TYPE_P0L0 | MB_TYPE_P1L0) #define MB_TYPE_L1 (MB_TYPE_P0L1 | MB_TYPE_P1L1) #define MB_TYPE_L0L1 (MB_TYPE_L0 | MB_TYPE_L1) #define MB_TYPE_QUANT 0x00010000 #define MB_TYPE_CBP 0x00020000 //Note bits 24-31 are reserved for codec specific use (h264 ref0, mpeg1 0mv, ...)
一个宏块如果包含上述定义中的一种或两种类型,则其对应的宏块变量的对应位会被置1。
注:一个宏块可以包含好几种类型,但是有些类型是不能重复包含的,比如说一个宏块不可能既是16x16又是8x8。
8.ref_index
运动估计参考帧列表存储了一帧视频中所有宏块的参考帧索引。这个列表其实在比较早的压缩编码标准中是没有什么用的。只有像H.264这样的编码标准才有多参考帧的概念。但是这个字段目前我还没有研究透。只是知道每个宏块包含有4个该值,该值反映的是参考帧的索引。以后有机会再进行细研究吧。
在这里展示一下自己做的码流分析软件的运行结果。将上文介绍的几个列表图像化显示了出来(在这里是使用MFC的绘图函数画出来的)
视频帧:
QP参数提取的结果:
美化过的(加上了颜色):
宏块类型参数提取的结果:
美化过的(加上了颜色,更清晰一些,s代表skip宏块):
运动矢量参数提取的结果(在这里是List0):
运动估计参考帧参数提取的结果:
相关推荐
4.13 AVFrame结构体 67 第五章 重要模块 76 5.1 libavutil公共模块 76 1 文件列表 76 2 common.h 文件 76 3 bswap.h 文件 78 4 rational.h 文件 79 5 mathematics.h 文件 80 6 avutil.h 文件 80 5.2 libavcodec编...
6. AVFrame:AVFrame结构体用于存放原始视频帧或音频帧的数据。在编解码前,需要为视频帧分配相应的内存空间,并对AVFrame进行初始化。 7. AVPacket:AVPacket结构体用于存放编解码后的数据包,它包括了编码后的...
- 示例代码可能包括创建AVFormatContext,解析输入流,获取AVStream,解码视频帧,然后使用AVFrame和AVPicture结构体来保存图片数据。 6. 面临的挑战: - 并发处理:如果需要对大量视频进行截图,需要考虑多线程...
- **AVFrame结构体**: 包含解码后的音频或视频数据。 #### 五、重要模块 - **libavutil公共模块** - 提供各种工具函数和支持功能。 - **libavcodec编解码模块** - 包含各种编解码器的实现。 - **libavformat容器...
"FFmpeg-master.zip" 是 FFmpeg 源代码的压缩包,"FFmpeg-master" 是源代码仓库的主目录,而 "ffmpeg_ffmpeg 播放" 指的是使用 FFmpeg 进行视频播放的相关示例。 在 FFmpeg 中,播放视频主要涉及到以下几个关键步骤...
它们定义了 FFmpeg 中的各种结构体、枚举类型、函数原型等,使得 Delphi 程序能够理解和使用 FFmpeg 的功能。 `examples` 目录可能包含了一些示例代码,这些代码展示了如何在 Delphi 中使用 FFVCL 和 FFmpeg 头文件...
4. **转换到 IplImage**:解码后的 AVFrame 结构体需要通过特定的方法转换为 IplImage,这通常涉及数据的拷贝和格式转换。 5. **处理和显示帧**:利用 OpenCV 函数,如 cv::cvtColor() 转换颜色空间,cv::imshow() ...
解码后的数据通常存储在`AVFrame`结构体中。 9. **处理解码后的数据** 解码后的视频帧可以通过图像处理函数进行显示,音频数据则可以送到声卡播放。 10. **关闭资源** 在处理完所有数据后,记得释放分配的内存和...
这需要一个`AVFormatContext`结构体,它是FFmpeg中的核心数据结构,包含了媒体流的所有信息。 3. **读取流信息**: 调用`avformat_find_stream_info()`来获取流的详细信息,如编码格式、帧率等。这有助于后续的解码...
1. 初始化FFmpeg上下文:首先,我们需要创建一个`AVFormatContext`结构体实例,它是FFmpeg中的核心上下文,用于存储与输入或输出文件相关的信息。通过调用`avformat_open_input()`函数打开RTSP流,并使用`avformat_...
3. **include**:此目录下包含FFmpeg库的头文件,它们定义了各种函数、结构体和枚举,使得开发者可以在自己的项目中调用FFmpeg的功能。比如`libavcodec/avcodec.h`、`libavformat/avformat.h`等,这些都是开发音视频...
在“ffmpeg解码端代码及语义分析.pdf”中,可能会详细分析上述步骤中的关键函数和结构体,如AVPacket、AVFrame、AVCodecContext等。它会解释这些核心组件的用途,以及它们如何协同工作来完成解码任务。 例如,`...
4. **音视频同步**:播放器需要保持音频和视频的同步,可以使用`AVPacket`和`AVFrame`结构体,结合`av_interleaved_write_frame`或`avcodec_send_packet`进行数据传输。 5. **解码**:通过`avcodec_decode_audio4`...
解码后的像素数据可以存储在`AVFrame`结构体中。 6. **处理解码后的数据**:解码后的数据可以进行进一步处理,如显示视频帧、播放音频等。对于视频,可能需要将像素数据转换到特定的颜色空间,然后使用OpenCV或其他...
4.13 AVFrame 结构体 53 第五章 重要模块 68 5.1 libavutil 公共模块 68 1 文件列表 68 2 common.h 文件 68 3 bswap.h 文件 70 4 rational.h 文件 71 5 mathematics.h 文件 71 6 avutil.h 文件 72 5.2 libavcodec 编...
5. **AVFrame**:FFmpeg用于存储音视频帧的数据结构。我们需要创建一个AVFrame实例,用于接收从摄像头捕获的每一帧图像。 6. **图像编码和保存**:捕获到AVFrame后,可能需要将其编码为常见的图像格式(如JPEG或PNG...
在FFmpeg中,图像数据通常表示为AVFrame结构体。AVFrame包含图像的数据缓冲区、像素格式、尺寸等信息。当你需要从摄像头或其他视频源捕获一帧时,可以通过FFmpeg的API来获取和处理这些AVFrame对象。 2. 编码: ...
通过对源代码的分析,我们可以学习到 FFmpeg 如何与操作系统交互,如何处理多媒体数据,以及如何利用硬件加速等功能。这不仅对理解 FFmpeg 工作原理有帮助,也为开发自定义的多媒体应用提供了基础。
在C++环境中使用FFmpeg,可以方便地进行音视频处理和分析。本实例代码提供了FFmpeg与C++结合的具体应用,帮助开发者更好地理解和运用FFmpeg库。 在FFmpeg_CPP-master这个压缩包中,你将找到一系列C++源代码,这些...
FFmpeg中的`AVFrame`结构体存储了解码后的帧数据,包括像素格式、时间戳等信息。在视频播放时,需要将这些帧转换为适合渲染的格式,可能用到`sws_getContext`和`sws_scale`进行色彩空间转换。 4. 时间同步与播放...