`

FFMPEG结构体分析:AVFrame

 
阅读更多

 

注:写了一系列的结构体的分析的文章,在这里列一个列表:

FFMPEG结构体分析:AVFrame
FFMPEG结构体分析:AVFormatContext
FFMPEG结构体分析:AVCodecContext
FFMPEG结构体分析:AVIOContext
FFMPEG结构体分析:AVCodec
FFMPEG结构体分析:AVStream
FFMPEG结构体分析:AVPacket

 

FFMPEG有几个最重要的结构体,包含了解协议,解封装,解码操作,此前已经进行过分析:

FFMPEG中最关键的结构体之间的关系

在此不再详述,其中AVFrame是包含码流参数较多的结构体。本文将会详细分析一下该结构体里主要变量的含义和作用。

首先看一下结构体的定义(位于avcodec.h):

 

/*
 *雷霄骅
 *leixiaohua1020@126.com
 *中国传媒大学/数字电视技术
 */
/**
 * Audio Video Frame.
 * New fields can be added to the end of AVFRAME with minor version
 * bumps. Similarly fields that are marked as to be only accessed by
 * av_opt_ptr() can be reordered. This allows 2 forks to add fields
 * without breaking compatibility with each other.
 * Removal, reordering and changes in the remaining cases require
 * a major version bump.
 * sizeof(AVFrame) must not be used outside libavcodec.
 */
typedef struct AVFrame {
#define AV_NUM_DATA_POINTERS 8
    /**图像数据
     * pointer to the picture/channel planes.
     * This might be different from the first allocated byte
     * - encoding: Set by user
     * - decoding: set by AVCodecContext.get_buffer()
     */
    uint8_t *data[AV_NUM_DATA_POINTERS];

    /**
     * Size, in bytes, of the data for each picture/channel plane.
     *
     * For audio, only linesize[0] may be set. For planar audio, each channel
     * plane must be the same size.
     *
     * - encoding: Set by user
     * - decoding: set by AVCodecContext.get_buffer()
     */
    int linesize[AV_NUM_DATA_POINTERS];

    /**
     * pointers to the data planes/channels.
     *
     * For video, this should simply point to data[].
     *
     * For planar audio, each channel has a separate data pointer, and
     * linesize[0] contains the size of each channel buffer.
     * For packed audio, there is just one data pointer, and linesize[0]
     * contains the total size of the buffer for all channels.
     *
     * Note: Both data and extended_data will always be set by get_buffer(),
     * but for planar audio with more channels that can fit in data,
     * extended_data must be used by the decoder in order to access all
     * channels.
     *
     * encoding: unused
     * decoding: set by AVCodecContext.get_buffer()
     */
    uint8_t **extended_data;

    /**宽高
     * width and height of the video frame
     * - encoding: unused
     * - decoding: Read by user.
     */
    int width, height;

    /**
     * number of audio samples (per channel) described by this frame
     * - encoding: Set by user
     * - decoding: Set by libavcodec
     */
    int nb_samples;

    /**
     * format of the frame, -1 if unknown or unset
     * Values correspond to enum AVPixelFormat for video frames,
     * enum AVSampleFormat for audio)
     * - encoding: unused
     * - decoding: Read by user.
     */
    int format;

    /**是否是关键帧
     * 1 -> keyframe, 0-> not
     * - encoding: Set by libavcodec.
     * - decoding: Set by libavcodec.
     */
    int key_frame;

    /**帧类型(I,B,P)
     * Picture type of the frame, see ?_TYPE below.
     * - encoding: Set by libavcodec. for coded_picture (and set by user for input).
     * - decoding: Set by libavcodec.
     */
    enum AVPictureType pict_type;

    /**
     * pointer to the first allocated byte of the picture. Can be used in get_buffer/release_buffer.
     * This isn't used by libavcodec unless the default get/release_buffer() is used.
     * - encoding:
     * - decoding:
     */
    uint8_t *base[AV_NUM_DATA_POINTERS];

    /**
     * sample aspect ratio for the video frame, 0/1 if unknown/unspecified
     * - encoding: unused
     * - decoding: Read by user.
     */
    AVRational sample_aspect_ratio;

    /**
     * presentation timestamp in time_base units (time when frame should be shown to user)
     * If AV_NOPTS_VALUE then frame_rate = 1/time_base will be assumed.
     * - encoding: MUST be set by user.
     * - decoding: Set by libavcodec.
     */
    int64_t pts;

    /**
     * reordered pts from the last AVPacket that has been input into the decoder
     * - encoding: unused
     * - decoding: Read by user.
     */
    int64_t pkt_pts;

    /**
     * dts from the last AVPacket that has been input into the decoder
     * - encoding: unused
     * - decoding: Read by user.
     */
    int64_t pkt_dts;

    /**
     * picture number in bitstream order
     * - encoding: set by
     * - decoding: Set by libavcodec.
     */
    int coded_picture_number;
    /**
     * picture number in display order
     * - encoding: set by
     * - decoding: Set by libavcodec.
     */
    int display_picture_number;

    /**
     * quality (between 1 (good) and FF_LAMBDA_MAX (bad))
     * - encoding: Set by libavcodec. for coded_picture (and set by user for input).
     * - decoding: Set by libavcodec.
     */
    int quality;

    /**
     * is this picture used as reference
     * The values for this are the same as the MpegEncContext.picture_structure
     * variable, that is 1->top field, 2->bottom field, 3->frame/both fields.
     * Set to 4 for delayed, non-reference frames.
     * - encoding: unused
     * - decoding: Set by libavcodec. (before get_buffer() call)).
     */
    int reference;

    /**QP表
     * QP table
     * - encoding: unused
     * - decoding: Set by libavcodec.
     */
    int8_t *qscale_table;
    /**
     * QP store stride
     * - encoding: unused
     * - decoding: Set by libavcodec.
     */
    int qstride;

    /**
     *
     */
    int qscale_type;

    /**跳过宏块表
     * mbskip_table[mb]>=1 if MB didn't change
     * stride= mb_width = (width+15)>>4
     * - encoding: unused
     * - decoding: Set by libavcodec.
     */
    uint8_t *mbskip_table;

    /**运动矢量表
     * motion vector table
     * @code
     * example:
     * int mv_sample_log2= 4 - motion_subsample_log2;
     * int mb_width= (width+15)>>4;
     * int mv_stride= (mb_width << mv_sample_log2) + 1;
     * motion_val[direction][x + y*mv_stride][0->mv_x, 1->mv_y];
     * @endcode
     * - encoding: Set by user.
     * - decoding: Set by libavcodec.
     */
    int16_t (*motion_val[2])[2];

    /**宏块类型表
     * macroblock type table
     * mb_type_base + mb_width + 2
     * - encoding: Set by user.
     * - decoding: Set by libavcodec.
     */
    uint32_t *mb_type;

    /**DCT系数
     * DCT coefficients
     * - encoding: unused
     * - decoding: Set by libavcodec.
     */
    short *dct_coeff;

    /**参考帧列表
     * motion reference frame index
     * the order in which these are stored can depend on the codec.
     * - encoding: Set by user.
     * - decoding: Set by libavcodec.
     */
    int8_t *ref_index[2];

    /**
     * for some private data of the user
     * - encoding: unused
     * - decoding: Set by user.
     */
    void *opaque;

    /**
     * error
     * - encoding: Set by libavcodec. if flags&CODEC_FLAG_PSNR.
     * - decoding: unused
     */
    uint64_t error[AV_NUM_DATA_POINTERS];

    /**
     * type of the buffer (to keep track of who has to deallocate data[*])
     * - encoding: Set by the one who allocates it.
     * - decoding: Set by the one who allocates it.
     * Note: User allocated (direct rendering) & internal buffers cannot coexist currently.
     */
    int type;

    /**
     * When decoding, this signals how much the picture must be delayed.
     * extra_delay = repeat_pict / (2*fps)
     * - encoding: unused
     * - decoding: Set by libavcodec.
     */
    int repeat_pict;

    /**
     * The content of the picture is interlaced.
     * - encoding: Set by user.
     * - decoding: Set by libavcodec. (default 0)
     */
    int interlaced_frame;

    /**
     * If the content is interlaced, is top field displayed first.
     * - encoding: Set by user.
     * - decoding: Set by libavcodec.
     */
    int top_field_first;

    /**
     * Tell user application that palette has changed from previous frame.
     * - encoding: ??? (no palette-enabled encoder yet)
     * - decoding: Set by libavcodec. (default 0).
     */
    int palette_has_changed;

    /**
     * codec suggestion on buffer type if != 0
     * - encoding: unused
     * - decoding: Set by libavcodec. (before get_buffer() call)).
     */
    int buffer_hints;

    /**
     * Pan scan.
     * - encoding: Set by user.
     * - decoding: Set by libavcodec.
     */
    AVPanScan *pan_scan;

    /**
     * reordered opaque 64bit (generally an integer or a double precision float
     * PTS but can be anything).
     * The user sets AVCodecContext.reordered_opaque to represent the input at
     * that time,
     * the decoder reorders values as needed and sets AVFrame.reordered_opaque
     * to exactly one of the values provided by the user through AVCodecContext.reordered_opaque
     * @deprecated in favor of pkt_pts
     * - encoding: unused
     * - decoding: Read by user.
     */
    int64_t reordered_opaque;

    /**
     * hardware accelerator private data (FFmpeg-allocated)
     * - encoding: unused
     * - decoding: Set by libavcodec
     */
    void *hwaccel_picture_private;

    /**
     * the AVCodecContext which ff_thread_get_buffer() was last called on
     * - encoding: Set by libavcodec.
     * - decoding: Set by libavcodec.
     */
    struct AVCodecContext *owner;

    /**
     * used by multithreading to store frame-specific info
     * - encoding: Set by libavcodec.
     * - decoding: Set by libavcodec.
     */
    void *thread_opaque;

    /**
     * log2 of the size of the block which a single vector in motion_val represents:
     * (4->16x16, 3->8x8, 2-> 4x4, 1-> 2x2)
     * - encoding: unused
     * - decoding: Set by libavcodec.
     */
    uint8_t motion_subsample_log2;

    /**(音频)采样率
     * Sample rate of the audio data.
     *
     * - encoding: unused
     * - decoding: read by user
     */
    int sample_rate;

    /**
     * Channel layout of the audio data.
     *
     * - encoding: unused
     * - decoding: read by user.
     */
    uint64_t channel_layout;

    /**
     * frame timestamp estimated using various heuristics, in stream time base
     * Code outside libavcodec should access this field using:
     * av_frame_get_best_effort_timestamp(frame)
     * - encoding: unused
     * - decoding: set by libavcodec, read by user.
     */
    int64_t best_effort_timestamp;

    /**
     * reordered pos from the last AVPacket that has been input into the decoder
     * Code outside libavcodec should access this field using:
     * av_frame_get_pkt_pos(frame)
     * - encoding: unused
     * - decoding: Read by user.
     */
    int64_t pkt_pos;

    /**
     * duration of the corresponding packet, expressed in
     * AVStream->time_base units, 0 if unknown.
     * Code outside libavcodec should access this field using:
     * av_frame_get_pkt_duration(frame)
     * - encoding: unused
     * - decoding: Read by user.
     */
    int64_t pkt_duration;

    /**
     * metadata.
     * Code outside libavcodec should access this field using:
     * av_frame_get_metadata(frame)
     * - encoding: Set by user.
     * - decoding: Set by libavcodec.
     */
    AVDictionary *metadata;

    /**
     * decode error flags of the frame, set to a combination of
     * FF_DECODE_ERROR_xxx flags if the decoder produced a frame, but there
     * were errors during the decoding.
     * Code outside libavcodec should access this field using:
     * av_frame_get_decode_error_flags(frame)
     * - encoding: unused
     * - decoding: set by libavcodec, read by user.
     */
    int decode_error_flags;
#define FF_DECODE_ERROR_INVALID_BITSTREAM   1
#define FF_DECODE_ERROR_MISSING_REFERENCE   2

    /**
     * number of audio channels, only used for audio.
     * Code outside libavcodec should access this field using:
     * av_frame_get_channels(frame)
     * - encoding: unused
     * - decoding: Read by user.
     */
    int64_t channels;
} AVFrame;


AVFrame结构体一般用于存储原始数据(即非压缩数据,例如对视频来说是YUV,RGB,对音频来说是PCM),此外还包含了一些相关的信息。比如说,解码的时候存储了宏块类型表,QP表,运动矢量表等数据。编码的时候也存储了相关的数据。因此在使用FFMPEG进行码流分析的时候,AVFrame是一个很重要的结构体。

 

下面看几个主要变量的作用(在这里考虑解码的情况):

uint8_t *data[AV_NUM_DATA_POINTERS]:解码后原始数据(对视频来说是YUV,RGB,对音频来说是PCM)

int linesize[AV_NUM_DATA_POINTERS]:data的大小

int width, height:视频帧宽和高(1920x1080,1280x720...)

int nb_samples:音频的一个AVFrame中可能包含多个音频帧,在此标记包含了几个

int format:解码后原始数据类型(YUV420,YUV422,RGB24...)

int key_frame:是否是关键帧

enum AVPictureType pict_type:帧类型(I,B,P...)

AVRational sample_aspect_ratio:宽高比(16:9,4:3...)

int64_t pts:显示时间戳

int coded_picture_number:编码帧序号

int display_picture_number:显示帧序号

int8_t *qscale_table:QP表

uint8_t *mbskip_table:跳过宏块表

int16_t (*motion_val[2])[2]:运动矢量表

uint32_t *mb_type:宏块类型表

short *dct_coeff:DCT系数,这个没有提取过

int8_t *ref_index[2]:运动估计参考帧列表(貌似H.264这种比较新的标准才会涉及到多参考帧)

int interlaced_frame:是否是隔行扫描

uint8_t motion_subsample_log2:一个宏块中的运动矢量采样个数,取log的

其他的变量不再一一列举,源代码中都有详细的说明。在这里重点分析一下几个需要一定的理解的变量:

1.data[]

对于packed格式的数据(例如RGB24),会存到data[0]里面。

对于planar格式的数据(例如YUV420P),则会分开成data[0],data[1],data[2]...(YUV420P中data[0]存Y,data[1]存U,data[2]存V)

具体参见:FFMPEG 实现 YUV,RGB各种图像原始数据之间的转换(swscale)

2.pict_type

包含以下类型:

 

enum AVPictureType {
    AV_PICTURE_TYPE_NONE = 0, ///< Undefined
    AV_PICTURE_TYPE_I,     ///< Intra
    AV_PICTURE_TYPE_P,     ///< Predicted
    AV_PICTURE_TYPE_B,     ///< Bi-dir predicted
    AV_PICTURE_TYPE_S,     ///< S(GMC)-VOP MPEG4
    AV_PICTURE_TYPE_SI,    ///< Switching Intra
    AV_PICTURE_TYPE_SP,    ///< Switching Predicted
    AV_PICTURE_TYPE_BI,    ///< BI type
};

3.sample_aspect_ratio

 

宽高比是一个分数,FFMPEG中用AVRational表达分数:

 

/**
 * rational number numerator/denominator
 */
typedef struct AVRational{
    int num; ///< numerator
    int den; ///< denominator
} AVRational;


4.qscale_table

 

QP表指向一块内存,里面存储的是每个宏块的QP值。宏块的标号是从左往右,一行一行的来的。每个宏块对应1个QP。

qscale_table[0]就是第1行第1列宏块的QP值;qscale_table[1]就是第1行第2列宏块的QP值;qscale_table[2]就是第1行第3列宏块的QP值。以此类推...

宏块的个数用下式计算:

注:宏块大小是16x16的。

每行宏块数:

 

int mb_stride = pCodecCtx->width/16+1

 

宏块的总数:

 

int mb_sum = ((pCodecCtx->height+15)>>4)*(pCodecCtx->width/16+1)

 

 

5.motion_subsample_log2

1个运动矢量所能代表的画面大小(用宽或者高表示,单位是像素),注意,这里取了log2。

代码注释中给出以下数据:

4->16x16, 3->8x8, 2-> 4x4, 1-> 2x2

即1个运动矢量代表16x16的画面的时候,该值取4;1个运动矢量代表8x8的画面的时候,该值取3...以此类推

6.motion_val

运动矢量表存储了一帧视频中的所有运动矢量。

该值的存储方式比较特别:

 

int16_t (*motion_val[2])[2];

为了弄清楚该值究竟是怎么存的,花了我好一阵子功夫...

 

注释中给了一段代码:

 

int mv_sample_log2= 4 - motion_subsample_log2;
int mb_width= (width+15)>>4;
int mv_stride= (mb_width << mv_sample_log2) + 1;
motion_val[direction][x + y*mv_stride][0->mv_x, 1->mv_y];

大概知道了该数据的结构:

1.首先分为两个列表L0和L1

2.每个列表(L0或L1)存储了一系列的MV(每个MV对应一个画面,大小由motion_subsample_log2决定)

3.每个MV分为横坐标和纵坐标(x,y)

注意,在FFMPEG中MV和MB在存储的结构上是没有什么关联的,第1个MV是屏幕上左上角画面的MV(画面的大小取决于motion_subsample_log2),第2个MV是屏幕上第1行第2列的画面的MV,以此类推。因此在一个宏块(16x16)的运动矢量很有可能如下图所示(line代表一行运动矢量的个数):

 

//例如8x8划分的运动矢量与宏块的关系:
				//-------------------------
				//|          |            |
				//|mv[x]     |mv[x+1]     |
				//-------------------------
				//|          |	          |
				//|mv[x+line]|mv[x+line+1]|
				//-------------------------

 

 

7.mb_type

宏块类型表存储了一帧视频中的所有宏块的类型。其存储方式和QP表差不多。只不过其是uint32类型的,而QP表是uint8类型的。每个宏块对应一个宏块类型变量。

宏块类型如下定义所示:

 

//The following defines may change, don't expect compatibility if you use them.
#define MB_TYPE_INTRA4x4   0x0001
#define MB_TYPE_INTRA16x16 0x0002 //FIXME H.264-specific
#define MB_TYPE_INTRA_PCM  0x0004 //FIXME H.264-specific
#define MB_TYPE_16x16      0x0008
#define MB_TYPE_16x8       0x0010
#define MB_TYPE_8x16       0x0020
#define MB_TYPE_8x8        0x0040
#define MB_TYPE_INTERLACED 0x0080
#define MB_TYPE_DIRECT2    0x0100 //FIXME
#define MB_TYPE_ACPRED     0x0200
#define MB_TYPE_GMC        0x0400
#define MB_TYPE_SKIP       0x0800
#define MB_TYPE_P0L0       0x1000
#define MB_TYPE_P1L0       0x2000
#define MB_TYPE_P0L1       0x4000
#define MB_TYPE_P1L1       0x8000
#define MB_TYPE_L0         (MB_TYPE_P0L0 | MB_TYPE_P1L0)
#define MB_TYPE_L1         (MB_TYPE_P0L1 | MB_TYPE_P1L1)
#define MB_TYPE_L0L1       (MB_TYPE_L0   | MB_TYPE_L1)
#define MB_TYPE_QUANT      0x00010000
#define MB_TYPE_CBP        0x00020000
//Note bits 24-31 are reserved for codec specific use (h264 ref0, mpeg1 0mv, ...)

一个宏块如果包含上述定义中的一种或两种类型,则其对应的宏块变量的对应位会被置1。
注:一个宏块可以包含好几种类型,但是有些类型是不能重复包含的,比如说一个宏块不可能既是16x16又是8x8。

 

 

8.ref_index

运动估计参考帧列表存储了一帧视频中所有宏块的参考帧索引。这个列表其实在比较早的压缩编码标准中是没有什么用的。只有像H.264这样的编码标准才有多参考帧的概念。但是这个字段目前我还没有研究透。只是知道每个宏块包含有4个该值,该值反映的是参考帧的索引。以后有机会再进行细研究吧。

 

 

在这里展示一下自己做的码流分析软件的运行结果。将上文介绍的几个列表图像化显示了出来(在这里是使用MFC的绘图函数画出来的)

视频帧:

QP参数提取的结果:

美化过的(加上了颜色):

 

宏块类型参数提取的结果:

美化过的(加上了颜色,更清晰一些,s代表skip宏块):

 

运动矢量参数提取的结果(在这里是List0):

运动估计参考帧参数提取的结果:

分享到:
评论

相关推荐

    FFmpeg基础库编程开发

    4.13 AVFrame结构体 67 第五章 重要模块 76 5.1 libavutil公共模块 76 1 文件列表 76 2 common.h 文件 76 3 bswap.h 文件 78 4 rational.h 文件 79 5 mathematics.h 文件 80 6 avutil.h 文件 80 5.2 libavcodec编...

    FFMpeg SDK 开发手册

    6. AVFrame:AVFrame结构体用于存放原始视频帧或音频帧的数据。在编解码前,需要为视频帧分配相应的内存空间,并对AVFrame进行初始化。 7. AVPacket:AVPacket结构体用于存放编解码后的数据包,它包括了编码后的...

    ffmpeg截图代码

    - 示例代码可能包括创建AVFormatContext,解析输入流,获取AVStream,解码视频帧,然后使用AVFrame和AVPicture结构体来保存图片数据。 6. 面临的挑战: - 并发处理:如果需要对大量视频进行截图,需要考虑多线程...

    ffmpeg基础库编程开发_add_notes.pdf

    - **AVFrame结构体**: 包含解码后的音频或视频数据。 #### 五、重要模块 - **libavutil公共模块** - 提供各种工具函数和支持功能。 - **libavcodec编解码模块** - 包含各种编解码器的实现。 - **libavformat容器...

    FFmpeg-master.zip_FFmpeg-master_ffmpeg_ffmpeg 播放

    "FFmpeg-master.zip" 是 FFmpeg 源代码的压缩包,"FFmpeg-master" 是源代码仓库的主目录,而 "ffmpeg_ffmpeg 播放" 指的是使用 FFmpeg 进行视频播放的相关示例。 在 FFmpeg 中,播放视频主要涉及到以下几个关键步骤...

    ffmpeg-delphi-pascal-headers-3.0.2.zip_FFVCL_delphi vlc_ffmpeg_f

    它们定义了 FFmpeg 中的各种结构体、枚举类型、函数原型等,使得 Delphi 程序能够理解和使用 FFmpeg 的功能。 `examples` 目录可能包含了一些示例代码,这些代码展示了如何在 Delphi 中使用 FFVCL 和 FFmpeg 头文件...

    ffmpeg.zip_FFmpeg 内存_JMdecode_ffmpeg open_opencv_ffmpeg_视频帧

    4. **转换到 IplImage**:解码后的 AVFrame 结构体需要通过特定的方法转换为 IplImage,这通常涉及数据的拷贝和格式转换。 5. **处理和显示帧**:利用 OpenCV 函数,如 cv::cvtColor() 转换颜色空间,cv::imshow() ...

    演示C#如何调用ffmpeg API_FFmpeg.AutoGen_ffmpeg

    解码后的数据通常存储在`AVFrame`结构体中。 9. **处理解码后的数据** 解码后的视频帧可以通过图像处理函数进行显示,音频数据则可以送到声卡播放。 10. **关闭资源** 在处理完所有数据后,记得释放分配的内存和...

    qt_ffmpeg_rtsp_rtsp取流_qtffmpeg流媒体_qt+ffmpeg_QT_qt_ffmpeg_rtsp

    这需要一个`AVFormatContext`结构体,它是FFmpeg中的核心数据结构,包含了媒体流的所有信息。 3. **读取流信息**: 调用`avformat_find_stream_info()`来获取流的详细信息,如编码格式、帧率等。这有助于后续的解码...

    FFMPEG实现RTSP中数据流解码 并且实时播放

    1. 初始化FFmpeg上下文:首先,我们需要创建一个`AVFormatContext`结构体实例,它是FFmpeg中的核心上下文,用于存储与输入或输出文件相关的信息。通过调用`avformat_open_input()`函数打开RTSP流,并使用`avformat_...

    音视频开发-FFmpeg-n5.1.2开发库

    3. **include**:此目录下包含FFmpeg库的头文件,它们定义了各种函数、结构体和枚举,使得开发者可以在自己的项目中调用FFmpeg的功能。比如`libavcodec/avcodec.h`、`libavformat/avformat.h`等,这些都是开发音视频...

    FFmpeg解码端代码及语义分析.rar

    在“ffmpeg解码端代码及语义分析.pdf”中,可能会详细分析上述步骤中的关键函数和结构体,如AVPacket、AVFrame、AVCodecContext等。它会解释这些核心组件的用途,以及它们如何协同工作来完成解码任务。 例如,`...

    iOS平台,一个用ffmpeg开发的播放器

    4. **音视频同步**:播放器需要保持音频和视频的同步,可以使用`AVPacket`和`AVFrame`结构体,结合`av_interleaved_write_frame`或`avcodec_send_packet`进行数据传输。 5. **解码**:通过`avcodec_decode_audio4`...

    FFmpeg_x64动态库测试程序

    解码后的像素数据可以存储在`AVFrame`结构体中。 6. **处理解码后的数据**:解码后的数据可以进行进一步处理,如显示视频帧、播放音频等。对于视频,可能需要将像素数据转换到特定的颜色空间,然后使用OpenCV或其他...

    ffmpeg基础开发资料自总结

    4.13 AVFrame 结构体 53 第五章 重要模块 68 5.1 libavutil 公共模块 68 1 文件列表 68 2 common.h 文件 68 3 bswap.h 文件 70 4 rational.h 文件 71 5 mathematics.h 文件 71 6 avutil.h 文件 72 5.2 libavcodec 编...

    基于ffmpeg摄像头同步截图

    5. **AVFrame**:FFmpeg用于存储音视频帧的数据结构。我们需要创建一个AVFrame实例,用于接收从摄像头捕获的每一帧图像。 6. **图像编码和保存**:捕获到AVFrame后,可能需要将其编码为常见的图像格式(如JPEG或PNG...

    capture_by_ffmpeg.rar

    在FFmpeg中,图像数据通常表示为AVFrame结构体。AVFrame包含图像的数据缓冲区、像素格式、尺寸等信息。当你需要从摄像头或其他视频源捕获一帧时,可以通过FFmpeg的API来获取和处理这些AVFrame对象。 2. 编码: ...

    ffmpeg视频解码示例代码

    通过对源代码的分析,我们可以学习到 FFmpeg 如何与操作系统交互,如何处理多媒体数据,以及如何利用硬件加速等功能。这不仅对理解 FFmpeg 工作原理有帮助,也为开发自定义的多媒体应用提供了基础。

    FFmpeg cpp 实例代码

    在C++环境中使用FFmpeg,可以方便地进行音视频处理和分析。本实例代码提供了FFmpeg与C++结合的具体应用,帮助开发者更好地理解和运用FFmpeg库。 在FFmpeg_CPP-master这个压缩包中,你将找到一系列C++源代码,这些...

    基于Ffmpeg+SDL的简单播放器源码

    FFmpeg中的`AVFrame`结构体存储了解码后的帧数据,包括像素格式、时间戳等信息。在视频播放时,需要将这些帧转换为适合渲染的格式,可能用到`sws_getContext`和`sws_scale`进行色彩空间转换。 4. 时间同步与播放...

Global site tag (gtag.js) - Google Analytics