`

java-多线程004

    博客分类:
  • java
阅读更多
Java线程:线程状态的转换
 
一、线程状态
 
线程的状态转换是线程控制的基础。线程状态总的可分为五大状态:分别是生、死、可运行、运行、等待/阻塞。用一个图来描述如下:
 
1、新状态:线程对象已经创建,还没有在其上调用start()方法。
 
2、可运行状态:当线程有资格运行,但调度程序还没有把它选定为运行线程时线程所处的状态。当start()方法调用时,线程首先进入可运行状态。在线程运行之后或者从阻塞、等待或睡眠状态回来后,也返回到可运行状态。
 
3、运行状态:线程调度程序从可运行池中选择一个线程作为当前线程时线程所处的状态。这也是线程进入运行状态的唯一一种方式。
 
4、等待/阻塞/睡眠状态:这是线程有资格运行时它所处的状态。实际上这个三状态组合为一种,其共同点是:线程仍旧是活的,但是当前没有条件运行。换句话说,它是可运行的,但是如果某件事件出现,他可能返回到可运行状态。
 
5、死亡态:当线程的run()方法完成时就认为它死去。这个线程对象也许是活的,但是,它已经不是一个单独执行的线程。线程一旦死亡,就不能复生。 如果在一个死去的线程上调用start()方法,会抛出java.lang.IllegalThreadStateException异常。
 
有关详细状态转换图可以参看本人的“Java多线程编程总结”中的图
 
二、阻止线程执行
对于线程的阻止,考虑一下三个方面,不考虑IO阻塞的情况:
睡眠;
等待;
因为需要一个对象的锁定而被阻塞。
 
1、睡眠
Thread.sleep(long millis)和Thread.sleep(long millis, int nanos)静态方法强制当前正在执行的线程休眠(暂停执行),以“减慢线程”。当线程睡眠时,它入睡在某个地方,在苏醒之前不会返回到可运行状态。当睡眠时间到期,则返回到可运行状态。
 
线程睡眠的原因:线程执行太快,或者需要强制进入下一轮,因为Java规范不保证合理的轮换。
 
睡眠的实现:调用静态方法。
        try {
            Thread.sleep(123);
        } catch (InterruptedException e) {
            e.printStackTrace();  
        }
 
睡眠的位置:为了让其他线程有机会执行,可以将Thread.sleep()的调用放线程run()之内。这样才能保证该线程执行过程中会睡眠。
 
例如,在前面的例子中,将一个耗时的操作改为睡眠,以减慢线程的执行。可以这么写:
 
    public void run() {
        for(int i = 0;i<5;i++){
// 很耗时的操作,用来减慢线程的执行
//            for(long k= 0; k <100000000;k++);
            try {
                Thread.sleep(3);
            } catch (InterruptedException e) {
                e.printStackTrace();  .
            }

            System.out.println(this.getName()+" :"+i);
        }
    }
 
运行结果:
阿三 :0 
李四 :0 
阿三 :1 
阿三 :2 
阿三 :3 
李四 :1 
李四 :2 
阿三 :4 
李四 :3 
李四 :4 

Process finished with exit code 0
 
这样,线程在每次执行过程中,总会睡眠3毫秒,睡眠了,其他的线程就有机会执行了。
 
注意:
1、线程睡眠是帮助所有线程获得运行机会的最好方法。
2、线程睡眠到期自动苏醒,并返回到可运行状态,不是运行状态。sleep()中指定的时间是线程不会运行的最短时间。因此,sleep()方法不能保证该线程睡眠到期后就开始执行。
3、sleep()是静态方法,只能控制当前正在运行的线程。
 
下面给个例子:
/** 
* 一个计数器,计数到100,在每个数字之间暂停1秒,每隔10个数字输出一个字符串 

*/
 
public class MyThread extends Thread { 

    public void run() { 
        for (int i = 0; i < 100; i++) { 
            if ((i) % 10 == 0) { 
                System.out.println("-------" + i); 
            } 
            System.out.print(i); 
            try { 
                Thread.sleep(1); 
                System.out.print("    线程睡眠1毫秒!\n"); 
            } catch (InterruptedException e) { 
                e.printStackTrace(); 
            } 
        } 
    } 

    public static void main(String[] args) { 
        new MyThread().start(); 
    } 
 
-------0 
0    线程睡眠1毫秒! 
1    线程睡眠1毫秒! 
2    线程睡眠1毫秒! 
3    线程睡眠1毫秒! 
4    线程睡眠1毫秒! 
5    线程睡眠1毫秒! 
6    线程睡眠1毫秒! 
7    线程睡眠1毫秒! 
8    线程睡眠1毫秒! 
9    线程睡眠1毫秒! 
-------10 
10    线程睡眠1毫秒! 
11    线程睡眠1毫秒! 
12    线程睡眠1毫秒! 
13    线程睡眠1毫秒! 
14    线程睡眠1毫秒! 
15    线程睡眠1毫秒! 
16    线程睡眠1毫秒! 
17    线程睡眠1毫秒! 
18    线程睡眠1毫秒! 
19    线程睡眠1毫秒! 
-------20 
20    线程睡眠1毫秒! 
21    线程睡眠1毫秒! 
22    线程睡眠1毫秒! 
23    线程睡眠1毫秒! 
24    线程睡眠1毫秒! 
25    线程睡眠1毫秒! 
26    线程睡眠1毫秒! 
27    线程睡眠1毫秒! 
28    线程睡眠1毫秒! 
29    线程睡眠1毫秒! 
-------30 
30    线程睡眠1毫秒! 
31    线程睡眠1毫秒! 
32    线程睡眠1毫秒! 
33    线程睡眠1毫秒! 
34    线程睡眠1毫秒! 
35    线程睡眠1毫秒! 
36    线程睡眠1毫秒! 
37    线程睡眠1毫秒! 
38    线程睡眠1毫秒! 
39    线程睡眠1毫秒! 
-------40 
40    线程睡眠1毫秒! 
41    线程睡眠1毫秒! 
42    线程睡眠1毫秒! 
43    线程睡眠1毫秒! 
44    线程睡眠1毫秒! 
45    线程睡眠1毫秒! 
46    线程睡眠1毫秒! 
47    线程睡眠1毫秒! 
48    线程睡眠1毫秒! 
49    线程睡眠1毫秒! 
-------50 
50    线程睡眠1毫秒! 
51    线程睡眠1毫秒! 
52    线程睡眠1毫秒! 
53    线程睡眠1毫秒! 
54    线程睡眠1毫秒! 
55    线程睡眠1毫秒! 
56    线程睡眠1毫秒! 
57    线程睡眠1毫秒! 
58    线程睡眠1毫秒! 
59    线程睡眠1毫秒! 
-------60 
60    线程睡眠1毫秒! 
61    线程睡眠1毫秒! 
62    线程睡眠1毫秒! 
63    线程睡眠1毫秒! 
64    线程睡眠1毫秒! 
65    线程睡眠1毫秒! 
66    线程睡眠1毫秒! 
67    线程睡眠1毫秒! 
68    线程睡眠1毫秒! 
69    线程睡眠1毫秒! 
-------70 
70    线程睡眠1毫秒! 
71    线程睡眠1毫秒! 
72    线程睡眠1毫秒! 
73    线程睡眠1毫秒! 
74    线程睡眠1毫秒! 
75    线程睡眠1毫秒! 
76    线程睡眠1毫秒! 
77    线程睡眠1毫秒! 
78    线程睡眠1毫秒! 
79    线程睡眠1毫秒! 
-------80 
80    线程睡眠1毫秒! 
81    线程睡眠1毫秒! 
82    线程睡眠1毫秒! 
83    线程睡眠1毫秒! 
84    线程睡眠1毫秒! 
85    线程睡眠1毫秒! 
86    线程睡眠1毫秒! 
87    线程睡眠1毫秒! 
88    线程睡眠1毫秒! 
89    线程睡眠1毫秒! 
-------90 
90    线程睡眠1毫秒! 
91    线程睡眠1毫秒! 
92    线程睡眠1毫秒! 
93    线程睡眠1毫秒! 
94    线程睡眠1毫秒! 
95    线程睡眠1毫秒! 
96    线程睡眠1毫秒! 
97    线程睡眠1毫秒! 
98    线程睡眠1毫秒! 
99    线程睡眠1毫秒! 

Process finished with exit code 0 

2、线程的优先级和线程让步yield()
线程的让步是通过Thread.yield()来实现的。yield()方法的作用是:暂停当前正在执行的线程对象,并执行其他线程。
 
要理解yield(),必须了解线程的优先级的概念。线程总是存在优先级,优先级范围在1~10之间。JVM线程调度程序是基于优先级的抢先调度机制。在大多数情况下,当前运行的线程优先级将大于或等于线程池中任何线程的优先级。但这仅仅是大多数情况。
 
注意:当设计多线程应用程序的时候,一定不要依赖于线程的优先级。因为线程调度优先级操作是没有保障的,只能把线程优先级作用作为一种提高程序效率的方法,但是要保证程序不依赖这种操作。
 
当线程池中线程都具有相同的优先级,调度程序的JVM实现自由选择它喜欢的线程。这时候调度程序的操作有两种可能:一是选择一个线程运行,直到它阻塞或者运行完成为止。二是时间分片,为池内的每个线程提供均等的运行机会。
 
设置线程的优先级:线程默认的优先级是创建它的执行线程的优先级。可以通过setPriority(int newPriority)更改线程的优先级。例如:
        Thread t = new MyThread();
        t.setPriority(8);
        t.start();
线程优先级为1~10之间的正整数,JVM从不会改变一个线程的优先级。然而,1~10之间的值是没有保证的。一些JVM可能不能识别10个不同的值,而将这些优先级进行每两个或多个合并,变成少于10个的优先级,则两个或多个优先级的线程可能被映射为一个优先级。
 
线程默认优先级是5,Thread类中有三个常量,定义线程优先级范围:
static int MAX_PRIORITY 
          线程可以具有的最高优先级。 
static int MIN_PRIORITY 
          线程可以具有的最低优先级。 
static int NORM_PRIORITY 
          分配给线程的默认优先级。
 
3、Thread.yield()方法
 
Thread.yield()方法作用是:暂停当前正在执行的线程对象,并执行其他线程。
yield()应该做的是让当前运行线程回到可运行状态,以允许具有相同优先级的其他线程获得运行机会。因此,使用yield()的目的是让相同优先级的线程之间能适当的轮转执行。但是,实际中无法保证yield()达到让步目的,因为让步的线程还有可能被线程调度程序再次选中。
结论:yield()从未导致线程转到等待/睡眠/阻塞状态。在大多数情况下,yield()将导致线程从运行状态转到可运行状态,但有可能没有效果。
 
4、join()方法
 
Thread的非静态方法join()让一个线程B“加入”到另外一个线程A的尾部。在A执行完毕之前,B不能工作。例如:
        Thread t = new MyThread();
        t.start();
        t.join();
另外,join()方法还有带超时限制的重载版本。 例如t.join(5000);则让线程等待5000毫秒,如果超过这个时间,则停止等待,变为可运行状态。
 
线程的加入join()对线程栈导致的结果是线程栈发生了变化,当然这些变化都是瞬时的。下面给示意图:
 
 public class JoinThread extends Thread{

     public JoinThread(String name){
           super(name);
     }
     
     public void run(){
           for(int i=0; i<10; i++){
                 for(long k=0; k<100000000; k++){}

                 System.out.println(this.getName() + ": " + i);
           }
     }
     
     public static void main(String[] args){
           Thread t1 = new JoinThread("AA AA");
           t1.start();
           try{
                 t1.join(1000);                 //Join在这里~
           } catch(InterruptedException e) {
                 e.printStackTrace();
           }      
           System.out.println("over");
     }
}

然后输出的结果是:
AA AA: 0
AA AA: 1
over
AA AA: 2
AA AA: 3
AA AA: 4
AA AA: 5
AA AA: 6
AA AA: 7
AA AA: 8
AA AA: 9

但是如果把 t.join(1000) 改成 t.join() 的话输出结果会变成:
AA AA: 0
AA AA: 1
AA AA: 2
AA AA: 3
AA AA: 4
AA AA: 5
AA AA: 6
AA AA: 7
AA AA: 8
AA AA: 9
over

这样子就很明显了,t.join(int wait_time);后面的代码想要执行需要满足以下条件之一:
1、线程t死了;
2、等待时间超过wait_time;

如果没有指定wait_time就只能等线程t死了才行了···

hread.join();后是不是指暂停主线程,优先运行thread,当thread线程结束后,再继续主线程?
ps:我在调用thread.join之前启动的线程b,在执行完thread.join()后,b线程不受影响,继续执行,受影响的只是主线程

我感觉 join() 理解成 强行抢占资源 比较好 我觉得发生机制 在栈空间里 就像楼主画的图那样 谁调用join()谁抢占资源 先运行 要么运行完 要么设置占用资源时间

 
小结
到目前位置,介绍了线程离开运行状态的3种方法:
1、调用Thread.sleep():使当前线程睡眠至少多少毫秒(尽管它可能在指定的时间之前被中断)。
2、调用Thread.yield():不能保障太多事情,尽管通常它会让当前运行线程回到可运行性状态,使得有相同优先级的线程有机会执行。
3、调用join()方法:保证当前线程停止执行,直到该线程所加入的线程完成为止。然而,如果它加入的线程没有存活,则当前线程不需要停止。
 
除了以上三种方式外,还有下面几种特殊情况可能使线程离开运行状态:
1、线程的run()方法完成。
2、在对象上调用wait()方法(不是在线程上调用)。
3、线程不能在对象上获得锁定,它正试图运行该对象的方法代码。
4、线程调度程序可以决定将当前运行状态移动到可运行状态,以便让另一个线程获得运行机会,而不需要任何理由。
 
分享到:
评论

相关推荐

    JAVA-多线程 所有文件

    这个“JAVA-多线程 所有文件”压缩包很可能包含了一系列关于Java多线程学习的源代码示例和相关文档。下面我们将深入探讨Java多线程的相关知识点。 1. **线程的概念**:线程是操作系统分配CPU时间的基本单位,一个...

    北大Java--多线程

    【北大Java--多线程】课程主要探讨了Java编程中多线程的相关概念和技术,这是在计算机科学中处理并发执行的重要部分。多线程允许在单一程序中同时执行多个任务,提高了程序的效率和响应性。 1. **多线程基本概念**...

    基于java的开发源码-多线程程序死锁检查 JCarder.zip

    基于java的开发源码-多线程程序死锁检查 JCarder.zip 基于java的开发源码-多线程程序死锁检查 JCarder.zip 基于java的开发源码-多线程程序死锁检查 JCarder.zip 基于java的开发源码-多线程程序死锁检查 JCarder.zip ...

    java-多线程 test

    java-多线程 test

    14.java-多线程.md

    14.java-多线程

    java - juc - 多线程 - 学习 -思维导图

    java - juc - 多线程 - 学习 -思维导图

    java-多线程中的同步与死锁笔记

    java-多线程中的同步与死锁笔记

    狂神说Java-多线程课程全部代码.rar

    《狂神说Java-多线程课程全部代码》是一个涵盖了Java多线程和并发编程的实战教程资源。这个压缩包包含了一系列的示例代码(如demo01),旨在帮助开发者深入理解和掌握Java中的多线程技术及其在并发环境中的应用。 ...

    Java-多线程教学文档

    Java多线程编程是Java开发中的重要组成部分,它允许程序同时执行多个任务,从而提高了CPU资源的利用率。本文档详细介绍了Java多线程的相关知识,包括概念、原理、创建、同步、调度以及新特性。 首先,理解多线程的...

    JAVA线程高级-线程按序交替执行

    在Java编程中,多线程是并发编程的重要组成部分,它允许程序同时执行多个任务,从而提高了系统的效率和响应性。然而,在某些场景下,我们可能需要控制线程的执行顺序,确保它们按照特定的顺序交替运行,这在并发编程...

    Java 多线程课程的代码及少量注释.zip

    Java 多线程主题1- Java 多线程启动线程2- Java 多线程Volatile – 基本线程通信3- Java 多线程同步4- Java 多线程锁对象5- Java 多线程线程池6- Java 多线程倒计时闩锁7- Java 多线程生产者-消费者8- Java 多线程...

    java多线程同步问题

    多线程注意:wait()方法的调用要有判定条件常用 while () obj.wait(timeout, nanos); ... // Perform action appropriate to condition } synchronized会影响共享数据,但对其他语句的执行不会有规律了!

    基于Http协议的断点续传-Java多线程与线程安全实践编程.zip

    基于Http协议的断点续传-Java多线程与线程安全实践编程.zip 基于Http协议的断点续传-Java多线程与线程安全实践编程.zip 基于Http协议的断点续传-Java多线程与线程安全实践编程.zip 基于Http协议的断点续传-Java多...

    Java-JUC-多线程 进阶

    Java-JUC-多线程进阶 Java-JUC-多线程进阶resources是 Java 并发编程的高级课程,涵盖了 Java 中的并发编程概念、线程安全、锁机制、集合类、线程池、函数式接口、Stream流式计算等多个方面。 什么是JUC JUC...

    Java操作Oracle数据库-多线程.rar

    本教程主要探讨如何在Java中利用多线程技术高效地与Oracle数据库进行交互,从而实现更强大的并发处理能力。通过"Java操作Oracle数据库-多线程.rar"这个压缩包,我们可以学习到以下几个关键知识点: 1. **JDBC连接**...

    Java--多线程编程

    Java多线程编程是Java开发中的重要组成部分,它允许程序同时执行多个任务,极大地提高了程序的效率和响应性。在Java中,多线程可以分为两种主要方式:通过实现Runnable接口或者继承Thread类来创建。 1. 实现...

    4JAVA编程高级-多线程编程

    ### JAVA编程高级-多线程编程 #### 一、多线程简介 多线程编程是一种软件技术,它允许在单个程序内并发执行多个控制流。这种技术极大地提高了程序的执行效率和响应能力,特别是在现代多核处理器环境中。本文档主要...

    Java-多线程线程状态转换图

    多线程线程状态转换图

    java----GUI线程

    练习GUI编程和多线程,包括多线程的睡眠、唤醒,界面的简单编程,实现字幕滚动的功能

Global site tag (gtag.js) - Google Analytics