安全哈希算法(Secure Hash Algorithm)主要适用于数字签名标准 (Digital Signature Standard DSS)里面定义的数字签名算法(Digital Signature Algorithm DSA)。对于长度小于2^64位的消息,SHA1会产生一个160位的消息摘要。当接收到消息的时候,这个消息摘要可以用来验证数据的完整性。在传输的过程中,数据很可能会发生变化,那么这时候就会产生不同的消息摘要。 SHA1有如下特性:不可以从消息摘要中复原信息;两个不同的消息不会产生同样的消息摘要。
SHA1 C语言实现
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <errno.h>
#undef BIG_ENDIAN_HOST
typedef unsigned int u32;
/****************
* Rotate a 32 bit integer by n bytes
*/
#if defined(__GNUC__) && defined(__i386__)
static inline u32
rol( u32 x, int n)
{
__asm__("roll %%cl,%0"
:"=r" (x)
:"0" (x),"c" (n));
return x;
}
#else
#define rol(x,n) ( ((x) << (n)) | ((x) >> (32-(n))) )
#endif
typedef struct {
u32 h0,h1,h2,h3,h4;
u32 nblocks;
unsigned char buf[64];
int count;
} SHA1_CONTEXT;
void
sha1_init( SHA1_CONTEXT *hd )
{
hd->h0 = 0x67452301;
hd->h1 = 0xefcdab89;
hd->h2 = 0x98badcfe;
hd->h3 = 0x10325476;
hd->h4 = 0xc3d2e1f0;
hd->nblocks = 0;
hd->count = 0;
}
/****************
* Transform the message X which consists of 16 32-bit-words
*/
static void
transform( SHA1_CONTEXT *hd, unsigned char *data )
{
u32 a,b,c,d,e,tm;
u32 x[16];
/* get values from the chaining vars */
a = hd->h0;
b = hd->h1;
c = hd->h2;
d = hd->h3;
e = hd->h4;
#ifdef BIG_ENDIAN_HOST
memcpy( x, data, 64 );
#else
{
int i;
unsigned char *p2;
for(i=0, p2=(unsigned char*)x; i < 16; i++, p2 += 4 )
{
p2[3] = *data++;
p2[2] = *data++;
p2[1] = *data++;
p2[0] = *data++;
}
}
#endif
#define K1 0x5A827999L
#define K2 0x6ED9EBA1L
#define K3 0x8F1BBCDCL
#define K4 0xCA62C1D6L
#define F1(x,y,z) ( z ^ ( x & ( y ^ z ) ) )
#define F2(x,y,z) ( x ^ y ^ z )
#define F3(x,y,z) ( ( x & y ) | ( z & ( x | y ) ) )
#define F4(x,y,z) ( x ^ y ^ z )
#define M(i) ( tm = x[i&0x0f] ^ x[(i-14)&0x0f] \
^ x[(i-8)&0x0f] ^ x[(i-3)&0x0f] \
, (x[i&0x0f] = rol(tm,1)) )
#define R(a,b,c,d,e,f,k,m) do { e += rol( a, 5 ) \
+ f( b, c, d ) \
+ k \
+ m; \
b = rol( b, 30 ); \
} while(0)
R( a, b, c, d, e, F1, K1, x[ 0] );
R( e, a, b, c, d, F1, K1, x[ 1] );
R( d, e, a, b, c, F1, K1, x[ 2] );
R( c, d, e, a, b, F1, K1, x[ 3] );
R( b, c, d, e, a, F1, K1, x[ 4] );
R( a, b, c, d, e, F1, K1, x[ 5] );
R( e, a, b, c, d, F1, K1, x[ 6] );
R( d, e, a, b, c, F1, K1, x[ 7] );
R( c, d, e, a, b, F1, K1, x[ 8] );
R( b, c, d, e, a, F1, K1, x[ 9] );
R( a, b, c, d, e, F1, K1, x[10] );
R( e, a, b, c, d, F1, K1, x[11] );
R( d, e, a, b, c, F1, K1, x[12] );
R( c, d, e, a, b, F1, K1, x[13] );
R( b, c, d, e, a, F1, K1, x[14] );
R( a, b, c, d, e, F1, K1, x[15] );
R( e, a, b, c, d, F1, K1, M(16) );
R( d, e, a, b, c, F1, K1, M(17) );
R( c, d, e, a, b, F1, K1, M(18) );
R( b, c, d, e, a, F1, K1, M(19) );
R( a, b, c, d, e, F2, K2, M(20) );
R( e, a, b, c, d, F2, K2, M(21) );
R( d, e, a, b, c, F2, K2, M(22) );
R( c, d, e, a, b, F2, K2, M(23) );
R( b, c, d, e, a, F2, K2, M(24) );
R( a, b, c, d, e, F2, K2, M(25) );
R( e, a, b, c, d, F2, K2, M(26) );
R( d, e, a, b, c, F2, K2, M(27) );
R( c, d, e, a, b, F2, K2, M(28) );
R( b, c, d, e, a, F2, K2, M(29) );
R( a, b, c, d, e, F2, K2, M(30) );
R( e, a, b, c, d, F2, K2, M(31) );
R( d, e, a, b, c, F2, K2, M(32) );
R( c, d, e, a, b, F2, K2, M(33) );
R( b, c, d, e, a, F2, K2, M(34) );
R( a, b, c, d, e, F2, K2, M(35) );
R( e, a, b, c, d, F2, K2, M(36) );
R( d, e, a, b, c, F2, K2, M(37) );
R( c, d, e, a, b, F2, K2, M(38) );
R( b, c, d, e, a, F2, K2, M(39) );
R( a, b, c, d, e, F3, K3, M(40) );
R( e, a, b, c, d, F3, K3, M(41) );
R( d, e, a, b, c, F3, K3, M(42) );
R( c, d, e, a, b, F3, K3, M(43) );
R( b, c, d, e, a, F3, K3, M(44) );
R( a, b, c, d, e, F3, K3, M(45) );
R( e, a, b, c, d, F3, K3, M(46) );
R( d, e, a, b, c, F3, K3, M(47) );
R( c, d, e, a, b, F3, K3, M(48) );
R( b, c, d, e, a, F3, K3, M(49) );
R( a, b, c, d, e, F3, K3, M(50) );
R( e, a, b, c, d, F3, K3, M(51) );
R( d, e, a, b, c, F3, K3, M(52) );
R( c, d, e, a, b, F3, K3, M(53) );
R( b, c, d, e, a, F3, K3, M(54) );
R( a, b, c, d, e, F3, K3, M(55) );
R( e, a, b, c, d, F3, K3, M(56) );
R( d, e, a, b, c, F3, K3, M(57) );
R( c, d, e, a, b, F3, K3, M(58) );
R( b, c, d, e, a, F3, K3, M(59) );
R( a, b, c, d, e, F4, K4, M(60) );
R( e, a, b, c, d, F4, K4, M(61) );
R( d, e, a, b, c, F4, K4, M(62) );
R( c, d, e, a, b, F4, K4, M(63) );
R( b, c, d, e, a, F4, K4, M(64) );
R( a, b, c, d, e, F4, K4, M(65) );
R( e, a, b, c, d, F4, K4, M(66) );
R( d, e, a, b, c, F4, K4, M(67) );
R( c, d, e, a, b, F4, K4, M(68) );
R( b, c, d, e, a, F4, K4, M(69) );
R( a, b, c, d, e, F4, K4, M(70) );
R( e, a, b, c, d, F4, K4, M(71) );
R( d, e, a, b, c, F4, K4, M(72) );
R( c, d, e, a, b, F4, K4, M(73) );
R( b, c, d, e, a, F4, K4, M(74) );
R( a, b, c, d, e, F4, K4, M(75) );
R( e, a, b, c, d, F4, K4, M(76) );
R( d, e, a, b, c, F4, K4, M(77) );
R( c, d, e, a, b, F4, K4, M(78) );
R( b, c, d, e, a, F4, K4, M(79) );
/* Update chaining vars */
hd->h0 += a;
hd->h1 += b;
hd->h2 += c;
hd->h3 += d;
hd->h4 += e;
}
/* Update the message digest with the contents
* of INBUF with length INLEN.
*/
static void
sha1_write( SHA1_CONTEXT *hd, unsigned char *inbuf, size_t inlen)
{
if( hd->count == 64 ) { /* flush the buffer */
transform( hd, hd->buf );
hd->count = 0;
hd->nblocks++;
}
if( !inbuf )
return;
if( hd->count ) {
for( ; inlen && hd->count < 64; inlen-- )
hd->buf[hd->count++] = *inbuf++;
sha1_write( hd, NULL, 0 );
if( !inlen )
return;
}
while( inlen >= 64 ) {
transform( hd, inbuf );
hd->count = 0;
hd->nblocks++;
inlen -= 64;
inbuf += 64;
}
for( ; inlen && hd->count < 64; inlen-- )
hd->buf[hd->count++] = *inbuf++;
}
/* The routine final terminates the computation and
* returns the digest.
* The handle is prepared for a new cycle, but adding bytes to the
* handle will the destroy the returned buffer.
* Returns: 20 bytes representing the digest.
*/
static void
sha1_final(SHA1_CONTEXT *hd)
{
u32 t, msb, lsb;
unsigned char *p;
sha1_write(hd, NULL, 0); /* flush */;
t = hd->nblocks;
/* multiply by 64 to make a byte count */
lsb = t << 6;
msb = t >> 26;
/* add the count */
t = lsb;
if( (lsb += hd->count) < t )
msb++;
/* multiply by 8 to make a bit count */
t = lsb;
lsb <<= 3;
msb <<= 3;
msb |= t >> 29;
if( hd->count < 56 ) { /* enough room */
hd->buf[hd->count++] = 0x80; /* pad */
while( hd->count < 56 )
hd->buf[hd->count++] = 0; /* pad */
}
else { /* need one extra block */
hd->buf[hd->count++] = 0x80; /* pad character */
while( hd->count < 64 )
hd->buf[hd->count++] = 0;
sha1_write(hd, NULL, 0); /* flush */;
memset(hd->buf, 0, 56 ); /* fill next block with zeroes */
}
/* append the 64 bit count */
hd->buf[56] = msb >> 24;
hd->buf[57] = msb >> 16;
hd->buf[58] = msb >> 8;
hd->buf[59] = msb ;
hd->buf[60] = lsb >> 24;
hd->buf[61] = lsb >> 16;
hd->buf[62] = lsb >> 8;
hd->buf[63] = lsb ;
transform( hd, hd->buf );
p = hd->buf;
#ifdef BIG_ENDIAN_HOST
#define X(a) do { *(u32*)p = hd->h##a ; p += 4; } while(0)
#else /* little endian */
#define X(a) do { *p++ = hd->h##a >> 24; *p++ = hd->h##a >> 16; \
*p++ = hd->h##a >> 8; *p++ = hd->h##a; } while(0)
#endif
X(0);
X(1);
X(2);
X(3);
X(4);
#undef X
}
控制台调用函数:
/*输出文件的SHA1值
* FileNameInPut:文件路径
*/
void GetFileSHA1(char *FileNameInPut)
{
if(FileNameInPut==NULL)
{
printf("\nUsage:\n <EXEFILE> <FILENAME>\n ");
return;
}
FILE *fp;
char buffer[4096];
size_t n;
SHA1_CONTEXT ctx;
int i;
fopen_s (&fp, FileNameInPut, "rb");
if (!fp)
{
printf("打开文件“%s”失败\n", FileNameInPut);
return;
}
sha1_init (&ctx);
while ( (n = fread (buffer, 1, sizeof buffer, fp))) sha1_write (&ctx, (unsigned char *)buffer, n);
if (ferror (fp))
{
printf("读取文件“%s”失败\n", FileNameInPut);
return;
}
sha1_final (&ctx);
fclose (fp);
for ( i=0; i < 20; i++)
{
printf("%02x",ctx.buf[i]);
}
}
适合程序中调用的返回值方式:
/*获取文件的SHA1值,如果发生错误则将错误信息写入outError
* FileNameInPut:文件路径
* outSHA1:SHA1输出变量
* outError:错误信息输出变量
* returns:outSHA1
*/
char *GetFileSHA1(char *FileNameInPut, char *outSHA1, char *outError)
{
if(FileNameInPut==NULL)
{
if (outError != NULL)
{
sprintf(outError, "%s", "FileNameInPut Is NULL");
}
return outSHA1;
}
FILE *fp;
char buffer[4096];
size_t n;
SHA1_CONTEXT ctx;
int i;
fopen_s (&fp, FileNameInPut, "rb");
if (!fp)
{
if (outError != NULL)
{
sprintf(outError, "打开文件“%s”失败\n", FileNameInPut);
}
return outSHA1;
}
sha1_init (&ctx);
while ( (n = fread (buffer, 1, sizeof buffer, fp))) sha1_write (&ctx, (unsigned char *)buffer, n);
if (ferror (fp))
{
if (outError != NULL)
{
sprintf(outError, "读取文件“%s”失败\n", FileNameInPut);
}
return outSHA1;
}
sha1_final (&ctx);
fclose (fp);
for ( i=0; i < 20; i++)
{
sprintf(outSHA1 + 2*i, "%02x", (unsigned char)ctx.buf[i]);
}
outSHA1[2*i] = '\0';
return outSHA1;
}
水平有限,此方法只是简单的实现,还有些问题没有解决,希望高手指点一二,小弟不胜感激!用法示例:
//用法实例:
int main (int argc, char **argv)
{
GetFileSHA1(*(argv+1));
printf("\r\n");
char sha1[41] = { 0 };
char eror[256] = { 0 };
printf("%s\r\n", GetFileSHA1(*(argv+1), sha1, NULL));
if (strlen(eror) != 0)
{
printf("获取SHA1发生错误:%s\r\n", eror);
}
printf("%s\r\n", GetFileSHA1(*(argv+1), sha1, eror));
if (strlen(eror) != 0)
{
printf("获取SHA1发生错误:%s\r\n", eror);
}
getchar();
return 0;
}
命令提示符下用法:
源码下载:http://download.csdn.net/detail/testcs_dn/7332933
分享到:
相关推荐
用C语言实现SHA1哈希函数,它将文件的每一行进行加密,输出160位的哈希值
亲测可要使用 * Filename: sha256.c * Author: Brad Conte (brad AT bradconte.com) * Copyright: * Disclaimer: This code is presented "as is" without any guarantees.
为了理解和学习SHA-1算法,你可以查看`main.cpp`中的代码,找出计算哈希值的函数,如`computeHash()`或`SHA1()`,并逐步理解其内部逻辑。同时,通过阅读和运行`Makefile.win`,了解如何在本地环境中编译和运行这个...
要使用这个实现,你需要将其解压并编译源代码,然后在你的程序中调用生成的库或可执行文件,将待哈希的数据传递给相应的函数,获取哈希值。 总结来说,SHA256哈希算法是信息安全领域的重要工具,而C语言实现提供了...
可以获取MD5的值和sha1的值简单易用,有用的朋友可以下载。
例如,计算一个文件的SHA256哈希,你可以打开文件,逐块读取内容并调用`sha256_update()`,最后调用`sha256_final()`获取哈希值。 总的来说,这个C语言源码提供了对MD5、SHA1和SHA256哈希函数的高效且方便的实现,...
在压缩包文件"sha1-c"中,你可以找到实现SHA1算法的C语言源文件。这个源文件可能包含了上述提到的所有步骤,并提供了一个简单的命令行接口,允许用户输入任意数据进行哈希计算。学习和理解这个源代码,不仅可以帮助...
1. **初始化哈希值**:SHA-1算法开始时有五个初始变量,分别是H0、H1、H2、H3和H4,它们是四个32位的整数,这些初始值是固定的。 2. **消息分割**:输入的消息被分割成512位的小块,每个小块称为一个消息块。 3. *...
2. 初始哈希:密钥首先与一个特定的填充模式结合,然后通过SHA1哈希函数进行处理,生成一个初始的哈希值。 3. 内部消息:原始信息与上一步得到的哈希值进行异或操作,然后再次通过SHA1哈希函数计算。 4. 输出:将...
2. **抗碰撞性**:对于不同的输入,SHA1应该产生显著不同的哈希值,使得两个不同的输入产生相同哈希值的可能性非常小。 3. **确定性**:对于相同的输入,SHA1总是会产生相同的哈希值,这样可以用来验证数据的完整性...
`sha1.c`很可能包含了SHA-1算法的具体实现,包括处理输入消息、执行哈希计算和生成哈希值的函数。而`sha2.h`可能是一个头文件,包含与SHA-2相关的定义、常量和函数声明,尽管文件名没有明确指定是SHA-256还是其他SHA...
SHA1则产生160位(20字节)的哈希值,尽管在过去的几年里,已经出现了针对SHA1的碰撞攻击,因此现在更推荐使用SHA256。 HMAC-SHA256的实现通常包括以下步骤: 1. 将密钥和一个特定的填充值进行SHA256运算,生成一个...
函数可能包括初始化(如`SHA1_Init`)、更新消息(如`SHA1_Update`)、完成并获取哈希值(如`SHA1_Final`)等。代码中会使用位操作(如`、`>>`)和字节序转换(例如大端到小端,小端到大端的转换)等技术。 理解并...
在C语言实现SHA-256时,一般会创建一个结构体来存储当前的哈希状态,定义一个函数来处理每个消息块,并提供一个接口函数接收原始消息,处理并返回最终的哈希值。代码中通常会有大量的位运算和循环,对效率要求较高,...
1) 初始化:设置初始哈希值和工作变量。 2) 分块:将输入消息分割成固定长度的块。 3) 扩展消息:每个块经过一系列操作扩展为更长的序列。 4) 哈希计算:对每个扩展后的消息块应用迭代过程,更新工作变量。 5) 结果...
描述中提到的"cd分发映像文件的,sha1值得计算,验证sha1"是指在发布CD或其他媒体镜像时,提供者会计算出这些文件的SHA1哈希值,并公之于众。用户在接收这些文件后,可以使用SHA1SUM工具计算自己下载的文件的哈希值...
在这个压缩包中,主要包含了一个名为"sha1sum"的源代码文件,很可能是一个命令行工具,用于计算文件的SHA1哈希值。 SHA1(Secure Hash Algorithm 1)是1995年由美国国家安全局设计的,属于SHA家族的一员。它接受...
SHA-1是由美国国家安全局(NSA)设计的一种哈希函数,它能够将任意长度的输入数据转化为固定长度的输出,通常是一个160位(20字节)的哈希值。在信息安全领域,SHA-1常用于数字签名、文件校验和等场景,但由于其安全...
2. **初始哈希值**:SHA1算法有五个32位的中间哈希值,初始化为特定的固定值。 3. **消息调度**:对每个消息块,算法执行一系列的位操作(如旋转和异或)来生成16个32位的“单词”。 4. **压缩函数**:压缩函数是...