Solr allows you to create multiple search indexes, each of which is represented by a Solr core. It is possible to partition your content across multiple Solr indexes (called sharding), as well as to create multiple copies of any partition of the data (called replication).
Choosing to shard
Sharding can be useful if you have too many documents to comfortably handle on a single server.
The number of shards has nothing to do with fault tolerance. It is strictly to help scale as the size of your collection of documents grows.In general, there are five primary factors you need to consider when decid-
ing on how many shards you need:
- Total number of documents
- Document size
- Required indexing throughput
- Query complexity
- Expected growth
Choosing to replicate
If your Solr cluster can handle 100 queries per second but your application needs to support 150 queries per second, you have a problem. Rather than breaking your index into additional partitions (adding shards), you would want to create multiple identical copies of your index and load balance traffic across each of the copies.
Master server’s solrconfig.xml
(http://masterserver:8983/solr/core1) <requestHandler name="/replication" class="solr.ReplicationHandler"> <lst name="master"> <str name="enable">true</str> <str name="replicateAfter">commit</str> <str name="replicateAfter">optimize</str> <str name="replicateAfter">startup</str> </lst> </requestHandler>
Slave server’s solrconfig.xml
(http://slaveserver:8983/solr/core1) <requestHandler name="/replication" class="solr.ReplicationHandler"> <lst name="slave"> <str name="enable">true</str> <str name="masterUrl"> http://masterserver:8983/solr/core1/replication </str> <str name="pollInterval">00:00:15</str> </lst> </requestHandler>
COMBINING SHARDING AND REPLICATION
At this point you know how to scale Solr to handle either more content (by sharding) or more query load (by replicating). If you are lucky enough to have both a large dataset and a large number of users trying to query your data, however, you may need to set up a cluster utilizing both sharding and replication. If you often have a large amount of indexing going, you may also want to separate your indexing operation and your query operation onto separate servers.
As you can tell from figure 12.5, setting up a Solr cluster to handle both sharding and replication can quickly become a maintenance nightmare. Querying load balancing between multiple manually defined Solr cores and ensuring replication is configured and enabled between each Solr core on the slave servers and the associated Solr core on the master server can become complex quickly. If you ever have a failure in one of your nodes, it can cause multiple nodes in the cluster to fail. If the single master server in figure 12.5 fails, for example, the entire cluster will stop receiving updates. Likewise, if one slave fails, any other slaves trying to run a distributed search dependent upon the failed slave will also fail their queries.
Thankfully, SolrCloud was created to take over management of these kinds of complexities for you.
相关推荐
an introduction to the administration, monitoring, and tuning of a Solr instance, as well as the concepts of sharding and replication. Next, you'll learn about various Solr extensions and how to ...
3. **分布式部署**:通过Sharding和Replication机制实现Solr集群的分布式部署,提高系统的可用性和扩展性。 4. **监控工具**:使用Solr提供的监控工具或者第三方工具(如Ganglia、Nagios等)对Solr集群进行监控。 #...
7. **分布式部署**:Solr可以通过Sharding和Replication机制实现数据的分布式存储和检索。 ### 应用场景 Solr因其强大的功能和灵活性,在多个领域得到了广泛应用: 1. **电子商务网站**:用于商品搜索和推荐系统...
1. **分布式搜索**:Solr支持在多台服务器上分布式部署,通过Sharding和Replication技术,能够处理海量数据,并实现快速的搜索响应。 2. **灵活的数据导入**:Solr提供了DataImportHandler(DIH),可以方便地从...
4. **分布式搜索**:Solr 4.9.0 支持分布式搜索,可以将索引分散在多台服务器上,通过Sharding和Replication技术实现负载均衡和数据冗余,提高系统的可用性和性能。 5. **实时索引**:Solr具有实时索引能力,即新...
通过Sharding和Replication技术,保证了数据的高可用性和容错性。 3. **实时索引**:Solr具有快速的索引能力,允许实时或准实时地更新和查询数据,适应不断变化的数据环境。 4. **Cloud模式**:SolrCloud模式是...
- **配置Sharding**:Sharding是指将索引分片存储在不同的Solr节点上,以提高搜索性能和扩展性。 - **配置Replication**:为提高系统的可用性和容错能力,可以设置多个副本,确保数据的安全性和一致性。 综上所述,...
2. **分布式搜索**:通过Sharding和Replication,Solr可以在多台服务器上构建大规模的搜索集群,实现数据的分散存储和并行处理。 3. **多字段类型支持**:Solr允许为不同的字段定义不同的数据类型,如text、int、...
SolrCloud支持自动的Sharding和Replication,使得数据分散在多个服务器上,提高了系统的稳定性。 2. **查询与排序**:Solr提供了丰富的查询语法,包括标准的Lucene查询语法、布尔运算符、通配符搜索、模糊匹配、...
2. Sharding与Replication:在SolrCloud中,数据可以被分成多个分片(Shard),每个分片可以在多台服务器上复制(Replica)。这样,当某台服务器出现故障时,其他服务器上的副本可以接管工作,保证服务的连续性。 ...
理解ZooKeeper的角色以及Sharding和Replication原理是大规模部署的关键。 8. **实时索引**:Solr支持实时添加、更新和删除文档,这对于需要实时反映数据变化的应用场景非常重要。 9. **优化与分析**:索引优化是...
它通过Sharding和Replication技术,确保数据的可用性和容错性。 3. **云服务支持**:SolrCloud是Solr的分布式管理解决方案,它基于ZooKeeper提供集群管理和配置协调,确保高可用性和一致性。在Solr 8.1.1中,用户...
8. **SolrCloud模式**:如果项目涉及到SolrCloud,那么还需要了解分布式搜索和存储的概念,如Sharding(分片)、Replication(复制)和ZooKeeper(协调节点)。 9. **Spring Data Repository**:项目可能使用了...
SolrCloud是Solr的分布式版本,支持Sharding和Replication,可以处理海量数据。 1. **安装与配置**: 安装Solr通常包括下载最新版本的Solr,解压并运行服务器。在Windows上,可以通过启动`bin/solr start`命令来...
- **分布式搜索**:通过Sharding和Replication,Solr可以分布在网络中的多台机器上,处理大规模数据并提高查询性能。 - **可扩展性**:Solr支持添加新的字段类型和处理链,可以根据需求定制化搜索功能。 - **XML/...
3. **Sharding与Replication**:Solr 4.2.0加强了sharding(分片)和replication(复制)功能,使得大型数据集可以在多台服务器间均匀分布,提高查询效率和系统容错能力。用户可以通过配置轻松管理分片策略和复制...
4. 分布式搜索的概念,特别是SolrCloud的Sharding和Replication机制。 5. 如何配置和使用CloudSolrClient进行SolrCloud的交互。 通过深入研究这个入门工程,你将能够熟练掌握Solr与Java的结合使用,为构建基于华为...
例如,通过SolrCloud实现分布式部署,利用Sharding和Replication提高可用性和性能,以及通过设置过滤器、分析器等进一步定制搜索行为。总之,掌握Solr的部署和使用是构建高效全文搜索引擎系统的基础,它能为企业数据...
通过Sharding和Replication,可以将大型数据集分布在多个服务器上,提高查询性能和系统的容错能力。 3. **Cloud模式**:SolrCloud是Solr 4引入的新特性,它允许Solr实例在Apache ZooKeeper的协调下组成集群。这样,...
2. 高效处理大数据:Solr 7引入了更强大的分布式搜索能力,通过Sharding和Replication,可以将大型数据集分散到多个节点上,实现水平扩展,确保在大数据量下的高性能。 3. 实时索引:Solr支持实时索引,这意味着...