`
乡里伢崽
  • 浏览: 111926 次
  • 性别: Icon_minigender_1
  • 来自: 深圳
社区版块
存档分类
最新评论

hive sql优化(全排序,笛卡尔积,exist in,决定reducer个数,合并MapReduce)

    博客分类:
  • hive
 
阅读更多
hive 全排序 优化
分类: hive hadoop hadoop 2013-01-28 20:11 717人阅读 评论(0) 收藏 举报
hive hadoop
目录(?)[+]
使用Hive可以高效而又快速地编写复杂的MapReduce查询逻辑。但是某些情况下,因为不熟悉数据特性,或没有遵循Hive的优化约定,Hive计算任务会变得非常低效,甚至无法得到结果。一个”好”的Hive程序仍然需要对Hive运行机制有深入的了解。

有一些大家比较熟悉的优化约定包括:Join中需要将大表写在靠右的位置;尽量使用UDF而不是transfrom……诸如此类。下面讨论5个性能和逻辑相关的问题,帮助你写出更好的Hive程序。

全排序
Hive的排序关键字是SORT BY,它有意区别于传统数据库的ORDER BY也是为了强调两者的区别–SORT BY只能在单机范围内排序。考虑以下表定义:

CREATE TABLE if not exists t_order(

id int, -- 订单编号

sale_id int, -- 销售ID

customer_id int, -- 客户ID

product _id int, -- 产品ID

amount int -- 数量

) PARTITIONED BY (ds STRING);
在表中查询所有销售记录,并按照销售ID和数量排序:

set mapred.reduce.tasks=2;

Select sale_id, amount from t_order

Sort by sale_id, amount;
这一查询可能得到非期望的排序。指定的2个reducer分发到的数据可能是(各自排序):

Reducer1:

Sale_id | amount

0 | 100

1 | 30

1 | 50

2 | 20
Reducer2:

Sale_id | amount

0 | 110

0 | 120

3 | 50

4 | 20
因为上述查询没有reduce key,hive会生成随机数作为reduce key。这样的话输入记录也随机地被分发到不同reducer机器上去了。为了保证reducer之间没有重复的sale_id记录,可以使用DISTRIBUTE BY关键字指定分发key为sale_id。改造后的HQL如下:

set mapred.reduce.tasks=2;

Select sale_id, amount from t_order

Distribute by sale_id

Sort by sale_id, amount;
这样能够保证查询的销售记录集合中,销售ID对应的数量是正确排序的,但是销售ID不能正确排序,原因是hive使用hadoop默认的HashPartitioner分发数据。

这就涉及到一个全排序的问题。解决的办法无外乎两种:

1.) 不分发数据,使用单个reducer:

set mapred.reduce.tasks=1;
这一方法的缺陷在于reduce端成为了性能瓶颈,而且在数据量大的情况下一般都无法得到结果。但是实践中这仍然是最常用的方法,原因是通常排序的查询是为了得到排名靠前的若干结果,因此可以用limit子句大大减少数据量。使用limit n后,传输到reduce端(单机)的数据记录数就减少到n* (map个数)。

2.) 修改Partitioner,这种方法可以做到全排序。这里可以使用Hadoop自带的TotalOrderPartitioner(来自于Yahoo!的TeraSort项目),这是一个为了支持跨reducer分发有序数据开发的Partitioner,它需要一个SequenceFile格式的文件指定分发的数据区间。如果我们已经生成了这一文件(存储在/tmp/range_key_list,分成100个reducer),可以将上述查询改写为

set mapred.reduce.tasks=100;

set hive.mapred.partitioner=org.apache.hadoop.mapred.lib.TotalOrderPartitioner;

set total.order.partitioner.path=/tmp/ range_key_list;

Select sale_id, amount from t_order

Cluster by sale_id

Sort by amount;
有很多种方法生成这一区间文件(例如hadoop自带的o.a.h.mapreduce.lib.partition.InputSampler工具)。这里介绍用Hive生成的方法,例如有一个按id有序的t_sale表:

CREATE TABLE if not exists t_sale (

id int,

name string,

loc string

);
则生成按sale_id分发的区间文件的方法是:

create external table range_keys(sale_id int)

row format serde

'org.apache.hadoop.hive.serde2.binarysortable.BinarySortableSerDe'

stored as

inputformat

'org.apache.hadoop.mapred.TextInputFormat'

outputformat

'org.apache.hadoop.hive.ql.io.HiveNullValueSequenceFileOutputFormat'

location '/tmp/range_key_list';



insert overwrite table range_keys

select distinct sale_id

from source t_sale sampletable(BUCKET 100 OUT OF 100 ON rand()) s

sort by sale_id;
生成的文件(/tmp/range_key_list目录下)可以让TotalOrderPartitioner按sale_id有序地分发reduce处理的数据。区间文件需要考虑的主要问题是数据分发的均衡性,这有赖于对数据深入的理解。

怎样做笛卡尔积?
当Hive设定为严格模式(hive.mapred.mode=strict)时,不允许在HQL语句中出现笛卡尔积,这实际说明了Hive对笛卡尔积支持较弱。因为找不到Join key,Hive只能使用1个reducer来完成笛卡尔积。

当然也可以用上面说的limit的办法来减少某个表参与join的数据量,但对于需要笛卡尔积语义的需求来说,经常是一个大表和一个小表的Join操作,结果仍然很大(以至于无法用单机处理),这时MapJoin才是最好的解决办法。

MapJoin,顾名思义,会在Map端完成Join操作。这需要将Join操作的一个或多个表完全读入内存。

MapJoin的用法是在查询/子查询的SELECT关键字后面添加/*+ MAPJOIN(tablelist) */提示优化器转化为MapJoin(目前Hive的优化器不能自动优化MapJoin)。其中tablelist可以是一个表,或以逗号连接的表的列表。tablelist中的表将会读入内存,应该将小表写在这里。

PS:有用户说MapJoin在子查询中可能出现未知BUG。在大表和小表做笛卡尔积时,规避笛卡尔积的方法是,给Join添加一个Join key,原理很简单:将小表扩充一列join key,并将小表的条目复制数倍,join key各不相同;将大表扩充一列join key为随机数。

怎样写exist in子句?
Hive不支持where子句中的子查询,SQL常用的exist in子句需要改写。这一改写相对简单。考虑以下SQL查询语句:

SELECT a.key, a.value

FROM a

WHERE a.key in

(SELECT b.key

FROM B);
可以改写为

SELECT a.key, a.value

FROM a LEFT OUTER JOIN b ON (a.key = b.key)

WHERE b.key <> NULL;
一个更高效的实现是利用left semi join改写为:

SELECT a.key, a.val

FROM a LEFT SEMI JOIN b on (a.key = b.key);
left semi join是0.5.0以上版本的特性。

Hive怎样决定reducer个数?
Hadoop MapReduce程序中,reducer个数的设定极大影响执行效率,这使得Hive怎样决定reducer个数成为一个关键问题。遗憾的是Hive的估计机制很弱,不指定reducer个数的情况下,Hive会猜测确定一个reducer个数,基于以下两个设定:

1. hive.exec.reducers.bytes.per.reducer(默认为1000^3)

2. hive.exec.reducers.max(默认为999)

计算reducer数的公式很简单:

N=min(参数2,总输入数据量/参数1)
通常情况下,有必要手动指定reducer个数。考虑到map阶段的输出数据量通常会比输入有大幅减少,因此即使不设定reducer个数,重设参数2还是必要的。依据Hadoop的经验,可以将参数2设定为0.95*(集群中TaskTracker个数)。


合并MapReduce操作
Multi-group by

Multi-group by是Hive的一个非常好的特性,它使得Hive中利用中间结果变得非常方便。例如,

FROM (SELECT a.status, b.school, b.gender

FROM status_updates a JOIN profiles b

ON (a.userid = b.userid and

a.ds='2009-03-20' )

) subq1

INSERT OVERWRITE TABLE gender_summary

PARTITION(ds='2009-03-20')

SELECT subq1.gender, COUNT(1) GROUP BY subq1.gender

INSERT OVERWRITE TABLE school_summary

PARTITION(ds='2009-03-20')

SELECT subq1.school, COUNT(1) GROUP BY subq1.school
上述查询语句使用了Multi-group by特性连续group by了2次数据,使用不同的group by key。这一特性可以减少一次MapReduce操作。


Multi-distinct

Multi-distinct是淘宝开发的另一个multi-xxx特性,使用Multi-distinct可以在同一查询/子查询中使用多个distinct,这同样减少了多次MapReduce操作。
分享到:
评论

相关推荐

    HiveSQL优化手册

    ### HiveSQL优化手册 #### 数据倾斜优化 **数据倾斜**是指在执行Hive查询时,由于数据分布不均,导致一部分任务处理的数据量远大于其他任务的现象,这将严重影响整个查询的性能。针对数据倾斜问题,可以从以下几个...

    Hive SQL 编译过程详解

    本文将深入探讨Hive SQL如何被编译成MapReduce任务,以及在这个过程中涉及到的关键原理。 1. MapReduce实现基本SQL操作的原理: - **Join的实现原理**:在Hive中,Join操作通常通过MapReduce来实现。例如,在一个...

    深入浅出Hive企业级架构优化、Hive Sql优化、压缩和分布式缓存

    Apache Hive 是一个基于 Hadoop 的数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的 SQL 查询功能,使不熟悉 MapReduce 的开发人员也能用 SQL 语言进行数据查询。Hive 在内部将 SQL 语句转换...

    基于 Antlr4 的 Hive SQL 解析.zip

    在本课程设计中,主题是“基于Antlr4的Hive SQL解析”,这涉及到了两个主要的技术领域:Antlr4和Hive SQL。Antlr4是一个强大的解析工具,用于生成解析器和词法分析器,它能处理各种语言的语法,包括SQL。而Hive SQL...

    HiveSQL详细和优化

    HiveSQL详细和优化,以及部分个人点评 This is a brief tutorial that provides an introduction on how to use Apache Hive HiveQL with Hadoop Distributed File System. This tutorial can be your first step ...

    Hive sql优化

    ### Hive SQL优化技巧详解 #### 一、数据倾斜优化 数据倾斜是指在Hive查询过程中,数据不均匀地分布在不同的Reducer上,导致某些Reducer处理的数据量远大于其他Reducer,从而影响整个查询性能的问题。解决数据倾斜...

    HiveSQL实战题目.docx

    HiveSQL 实战题目 HiveSQL 是一种基于 Hadoop 的数据仓库工具,用于存储、查询和分析大规模数据。本文档提供了 HiveSQL 实战题目,旨在帮助读者熟悉 HiveSQL 的基本概念和应用场景。 一、HiveSQL 基础 HiveSQL 是...

    深入浅出Hive企业级架构优化、Hive Sql优化,视频

    深入浅出Hive企业级架构优化、Hive Sql优化,视频!!!

    hivesql语句练习

    3.hive启动为一个服务器,来对外提供服务 bin/hiveserver2 nohup bin/hiveserver2 1&gt;/var/log/hiveserver.log 2&gt;/var/log/hiveserver.err & 启动成功后,可以在别的节点上用beeline去连接 bin/beeline -u ...

    hive常见的优化方案ppt

    7. **单个Reducer处理多组聚合**:`hive.single.reducer.group.by`可以尝试将多组聚合操作合并到一个Reducer,减少Reducer数量。 8. **控制并行Reduce任务**:通过`hive.exec.reducers.bytes.per.reducer`和`hive....

    Hive SQL性能优化

    ### Hive SQL性能优化详解 #### 一、Hive SQL执行顺序及原理 了解Hive SQL的执行顺序,有助于我们写出更高效、更高质量的代码。Hive SQL的执行大致可以分为以下几个步骤: 1. **确定数据源**:首先确定查询的数据...

    HiveSQL编译原理

    HiveSQL编译原理是大数据处理领域中的一个重要概念,它主要涉及到如何将用户提交的SQL语句转换为可执行的MapReduce或者Tez任务。在Hadoop生态系统中,Hive作为一个基于HDFS的数据仓库工具,提供了对大规模数据集进行...

    最强HiveSQL开发指南.pdf

    4. **查询优化**:使用合适的JOIN类型、减少笛卡尔积、使用物化视图和索引,以及避免全表扫描。 5. **硬件配置**:根据工作负载调整集群的硬件配置,如增加节点、增大内存或优化磁盘I/O。 6. **Hive配置调整**:...

    HiveSQL解析原理.docx

    ### HiveSQL解析原理详解 #### 一、引言 Hive作为一款建立在Hadoop之上的数据仓库系统,...通过以上六个阶段,Hive能够有效地将用户提交的SQL查询转化为高效执行的MapReduce任务,进而实现对大规模数据集的高效处理。

    HIVE-SQL开发规范.docx

    【秘密】Hive SQL 开发规范 Hive作为Hadoop生态系统中的重要组件,为企业提供了对大规模数据集的高效处理和分析能力。它允许用户通过类似于SQL的查询语言(HiveQL)来操作分布式存储的数据,简化了MapReduce编程...

    Hive_优化——深入浅出学Hive

    2. **笛卡尔积**:在严格模式下,Hive 不允许笛卡尔积,可以通过添加 Join Key 或使用 MapJoin 避免。 3. **控制 Map 数**:合理设置 Map 数量,避免过多小文件导致的任务开销。 4. **JOIN**:优化 JOIN 操作,...

    SQL、Hive SQL等SQL血缘解析工具

    // 具有子查询的sql String hql = "select id,name from (select id from table_1 where id={p0}) t1 inner join (select name --this is name\n from table_2) t2"; // 获取id字段的血缘 LineageNode idNode = ...

    hive sql详解 经典

    在大数据处理领域,Hive是一个基于Hadoop的数据仓库工具,它允许用户使用SQL(称为HiveQL)查询存储在Hadoop分布式文件系统(HDFS)中的大型数据集。这篇博客深入探讨了Hive SQL的使用,帮助用户理解和掌握其核心概念...

Global site tag (gtag.js) - Google Analytics