BloomFilter——大规模数据处理利器
Bloom Filter是由Bloom在1970年提出的一种多哈希函数映射的快速查找算法。通常应用在一些需要快速判断某个元素是否属于集合,但是并不严格要求100%正确的场合。
一. 实例
为了说明Bloom Filter存在的重要意义,举一个实例:
假设要你写一个网络蜘蛛(web crawler)。由于网络间的链接错综复杂,蜘蛛在网络间爬行很可能会形成“环”。为了避免形成“环”,就需要知道蜘蛛已经访问过那些URL。给一个URL,怎样知道蜘蛛是否已经访问过呢?稍微想想,就会有如下几种方案:
1. 将访问过的URL保存到数据库。
2. 用HashSet将访问过的URL保存起来。那只需接近O(1)的代价就可以查到一个URL是否被访问过了。
3. URL经过MD5或SHA-1等单向哈希后再保存到HashSet或数据库。
4. Bit-Map方法。建立一个BitSet,将每个URL经过一个哈希函数映射到某一位。
方法1~3都是将访问过的URL完整保存,方法4则只标记URL的一个映射位。
以上方法在数据量较小的情况下都能完美解决问题,但是当数据量变得非常庞大时问题就来了。
方法1的缺点:数据量变得非常庞大后关系型数据库查询的效率会变得很低。而且每来一个URL就启动一次数据库查询是不是太小题大做了?
方法2的缺点:太消耗内存。随着URL的增多,占用的内存会越来越多。就算只有1亿个URL,每个URL只算50个字符,就需要5GB内存。
方法3:由于字符串经过MD5处理后的信息摘要长度只有128Bit,SHA-1处理后也只有160Bit,因此方法3比方法2节省了好几倍的内存。
方法4消耗内存是相对较少的,但缺点是单一哈希函数发生冲突的概率太高。还记得数据结构课上学过的Hash表冲突的各种解决方法么?若要降低冲突发生的概率到1%,就要将BitSet的长度设置为URL个数的100倍。
实质上上面的算法都忽略了一个重要的隐含条件:允许小概率的出错,不一定要100%准确!也就是说少量url实际上没有没网络蜘蛛访问,而将它们错判为已访问的代价是很小的——大不了少抓几个网页呗。
二. Bloom Filter的算法
废话说到这里,下面引入本篇的主角——Bloom Filter。其实上面方法4的思想已经很接近Bloom Filter了。方法四的致命缺点是冲突概率高,为了降低冲突的概念,Bloom Filter使用了多个哈希函数,而不是一个。
Bloom Filter算法如下:
创建一个m位BitSet,先将所有位初始化为0,然后选择k个不同的哈希函数。第i个哈希函数对字符串str哈希的结果记为h(i,str),且h(i,str)的范围是0到m-1 。
(1) 加入字符串过程
下面是每个字符串处理的过程,首先是将字符串str“记录”到BitSet中的过程:
对于字符串str,分别计算h(1,str),h(2,str)…… h(k,str)。然后将BitSet的第h(1,str)、h(2,str)…… h(k,str)位设为1。
图1.Bloom Filter加入字符串过程
很简单吧?这样就将字符串str映射到BitSet中的k个二进制位了。
(2) 检查字符串是否存在的过程
下面是检查字符串str是否被BitSet记录过的过程:
对于字符串str,分别计算h(1,str),h(2,str)…… h(k,str)。然后检查BitSet的第h(1,str)、h(2,str)…… h(k,str)位是否为1,若其中任何一位不为1则可以判定str一定没有被记录过。若全部位都是1,则“认为”字符串str存在。
若一个字符串对应的Bit不全为1,则可以肯定该字符串一定没有被Bloom Filter记录过。(这是显然的,因为字符串被记录过,其对应的二进制位肯定全部被设为1了)
但是若一个字符串对应的Bit全为1,实际上是不能100%的肯定该字符串被Bloom Filter记录过的。(因为有可能该字符串的所有位都刚好是被其他字符串所对应)这种将该字符串划分错的情况,称为false positive 。
(3) 删除字符串过程
字符串加入了就被不能删除了,因为删除会影响到其他字符串。实在需要删除字符串的可以使用Counting bloomfilter(CBF),这是一种基本Bloom Filter的变体,CBF将基本Bloom Filter每一个Bit改为一个计数器,这样就可以实现删除字符串的功能了。
Bloom Filter跟单哈希函数Bit-Map不同之处在于:Bloom Filter使用了k个哈希函数,每个字符串跟k个bit对应。从而降低了冲突的概率。
三. Bloom Filter参数选择
(1)哈希函数选择
哈希函数的选择对性能的影响应该是很大的,一个好的哈希函数要能近似等概率的将字符串映射到各个Bit。选择k个不同的哈希函数比较麻烦,一种简单的方法是选择一个哈希函数,然后送入k个不同的参数。
(2)Bit数组大小选择
哈希函数个数k、位数组大小m、加入的字符串数量n的关系可以参考参考文献1。该文献证明了对于给定的m、n,当 k = ln(2)* m/n 时出错的概率是最小的。
同时该文献还给出特定的k,m,n的出错概率。例如:根据参考文献1,哈希函数个数k取10,位数组大小m设为字符串个数n的20倍时,false positive发生的概率是0.0000889 ,这个概率基本能满足网络爬虫的需求了。
四. Bloom Filter实现代码
下面给出一个简单的Bloom Filter的Java实现代码:
publicclass BloomFilter
{
/* BitSet初始分配2^24个bit */
privatestaticfinalint DEFAULT_SIZE =1<<25;
/* 不同哈希函数的种子,一般应取质数 */
privatestaticfinalint[] seeds =newint[] { 5, 7, 11, 13, 31, 37, 61 };
private BitSet bits =new BitSet(DEFAULT_SIZE);
/* 哈希函数对象 */
private SimpleHash[] func =new SimpleHash[seeds.length];
public BloomFilter()
{
for (int i =0; i < seeds.length; i++)
{
func[i] =new SimpleHash(DEFAULT_SIZE, seeds[i]);
}
}
// 将字符串标记到bits中
publicvoid add(String value)
{
for (SimpleHash f : func)
{
bits.set(f.hash(value), true);
}
}
//判断字符串是否已经被bits标记
publicboolean contains(String value)
{
if (value ==null)
{
returnfalse;
}
boolean ret =true;
for (SimpleHash f : func)
{
ret = ret && bits.get(f.hash(value));
}
return ret;
}
/* 哈希函数类 */
publicstaticclass SimpleHash
{
privateint cap;
privateint seed;
public SimpleHash(int cap, int seed)
{
this.cap = cap;
this.seed = seed;
}
//hash函数,采用简单的加权和hash
publicint hash(String value)
{
int result =0;
int len = value.length();
for (int i =0; i < len; i++)
{
result = seed * result + value.charAt(i);
}
return (cap -1) & result;
}
}
}
参考文献:
[1]Pei Cao. Bloom Filters - the math.
http://pages.cs.wisc.edu/~cao/papers/summary-cache/node8.html
[2]Wikipedia. Bloom filter.
http://en.wikipedia.org/wiki/Bloom_filter
转:http://www.cnblogs.com/heaad/archive/2011/01/02/1924195.html
相关推荐
**正文** Bloom Filter是一种空间效率极高的概率型数据结构,用于判断一个元素是否...理解和掌握Bloom Filter的原理及Go语言实现,对于从事大数据处理、搜索引擎开发或分布式系统的工程师来说,具有很高的实践价值。
在本文中,我们将深入探讨如何在Spring Boot应用中集成Redis并使用布隆过滤器(Bloom Filter)这一高效的数据结构。"demo-redis-bloom.zip"是一个包含示例代码的压缩包,它演示了如何在Java开发环境中实现这一功能。...
**Python-bloomfilter过滤器详解** Bloom Filter是一种空间效率极高的概率型数据结构,用于判断一个元素是否在一个集合中。在Python开发中,尤其是在处理大量数据时,Bloom Filter可以有效地节省内存空间,尤其适用...
BloomFilter<String> bloomFilter = BloomFilter.create(Funnels.stringFunnel(Charsets.UTF_8), 100000, 0.0001); // 添加元素 bloomFilter.put("element1"); bloomFilter.put("element2"); // 检查元素 ...
- **层次Bloom Filter**:在需要处理多级数据集的情况下,可以使用层次Bloom Filter,通过多层Bloom Filter来优化查询效率和误报率。 - **可计数Bloom Filter**:在某些情况下,不仅需要判断元素是否存在,还需要...
"一种新的基于Bloom filter数据结构的数据消冗算法" ...本文提出了一种新的基于Bloom filter数据结构的数据消冗算法,该算法可以有效地降低数据存储空间和提高数据处理效率,为大数据处理提供了新的思路和方法。
- **bloomfilter.h**:这是一个头文件,很可能包含了Bloom Filter的数据结构定义和相关操作函数的声明。在C语言中,头文件通常用于提供接口给其他源文件使用,这里可能是为了在spider.c中方便地调用Bloom Filter的...
- **构建:** 对于每个SSTable,构建一个小的Bloom Filter,并将其与SSTable的元数据一起存储。 - **调整策略:** 根据访问频率动态调整Bloom Filter的激活状态。具体来说,对于频繁访问的SSTable,其Bloom Filter将被...
总结来说,Bloom Filter是一种在大数据处理中节省空间并提高查询效率的工具,尤其适合于对精确性要求不高但需要快速响应的场景。尽管存在误判的可能性,但其巧妙的设计使得它在许多实际应用中成为一种不可或缺的数据...
Scrapy_Redis_Bloomfilter-master.zip 是一个包含Scrapy Redis Bloomfilter过滤器的安装包,主要目的是在数据抓取过程中优化和提升效率。Scrapy是一个流行的Python爬虫框架,而Redis是一个高性能的键值存储系统,...
总的来说,Go中的Cuckoo Filter通过引入动态哈希和删除功能,提供了比Bloom Filter更优的解决方案,尤其在处理大量数据且对误报率和删除操作有要求的场景下。然而,选择哪种数据结构取决于具体的应用场景和需求。在...
在IT领域,数据过滤和检索效率是至关重要的,特别是在大数据处理和实时系统中。Go语言以其简洁的语法和高效的性能,成为了许多开发者的选择。本文将深入探讨标题提及的"Go-一个CuckooFilter的Go库BloomFilter的替代...
在处理大量数据时,如C#中的海量数据,Bloom Filter是极具价值的工具。 **工作原理** Bloom Filter由一个很长的二进制向量和几个不同的哈希函数组成。当一个元素添加到过滤器中时,每个哈希函数都会将元素映射到...
3. 分布式技术与Bloom Filter结合:在海量数据快速匹配的背景下,分布式技术可以有效提升处理速度和数据的并发处理能力。文章提出了一种基于Bloom Filter的分布式快速匹配算法,该方法能显著降低程序对服务器内存的...
在传统的Bloom Filter中,它通常处理单一的关键字,而在“多字段矩阵型Bloom Filter”中,这一概念被扩展到了支持多个字段的情况,这使得它在处理复杂数据集时更具灵活性。 首先,我们要理解Bloom Filter的基本原理...
在IT领域,尤其是在大数据处理和分布式系统中,数据去重是一项关键任务。本文将深入探讨两种常用的技术:哈希和布隆过滤器,以及它们在处理海量数据时的应用。 哈希算法是数据去重的基础,它能够将任意大小的数据...
由Burton Howard Bloom在1970年提出,主要用于节省存储空间,尤其在大数据场景下,它能有效地解决大规模数据集的查找问题。 **原理介绍:** 1. **哈希函数**:Bloom Filter使用多个不同的哈希函数将元素映射到一个...