`

Multitasking the android way

 
阅读更多

 
 
 
 

28 APRIL 2010

Multitasking the Android Way

 

[This post is by Dianne Hackborn, a Software Engineer who sits very near the exact center of everything Android. — Tim Bray]

Android is fairly unique in the ways it allows multiple applications to run at the same time. Developers coming from a different platform may find the way it operates surprising. Understanding its behavior is important for designing applications that will work well and integrate seamlessly with the rest of the Android platform. This article covers the reasons for Android's multitasking design, its impact on how applications work, and how you can best take advantage of Android's unique features.

DESIGN CONSIDERATIONS

Mobile devices have technical limitations and user experience requirements not present in desktop or web systems. Here are the four key constraints we were working under as we designed Android's multitasking:

  • We did not want to require that users close applications when "done" with them. Such a usage pattern does not work well in a mobile environment, where usage tends to involve repeated brief contact with a wide variety of applications throughout the day.

  • Mobile devices don't have the luxury of swap space, so have fairly hard limits on memory use. Robert Love has a very good article covering the topic.

  • Application switching on a mobile device is extremely critical; we target significantly less than 1 second to launch a new application. This is especially important when the user is switching between a few applications, such as switching to look at a new SMS message while watching a video, and then returning to that video. A noticeable wait in such situations will quickly make users hate you.

  • The available APIs must be sufficient for writing the built-in Google applications, as part of our "all applications are created equal" philosophy. This means background music playback, data syncing, GPS navigation, and application downloading must be implemented with the same APIs that are available to third party developers.

The first two requirements highlight an interesting conflict. We don't want users to worry about closing their apps, but rather make it appear that all of the applications are always running. At the same time, mobile devices have hard limits on memory use, so that a system will degrade or even start failing very quickly as it needs more RAM than is available; a desktop computer, with swap, in contrast will simply start slowing down as it needs to page RAM to its swap space. These competing constraints were a key motivation for Android's design.

WHEN DOES AN APPLICATION "STOP"?

A common misunderstanding about Android multitasking is the difference between a process and an application. In Android these are not tightly coupled entities: applications may seem present to the user without an actual process currently running the app; multiple applications may share processes, or one application may make use of multiple processes depending on its needs; the process(es) of an application may be kept around by Android even when that application is not actively doing something.

The fact that you can see an application's process "running" does not mean the application is running or doing anything. It may simply be there because Android needed it at some point, and has decided that it would be best to keep it around in case it needs it again. Likewise, you may leave an application for a little bit and return to it from where you left off, and during that time Android may have needed to get rid of the process for other things.

A key to how Android handles applications in this way is that processes don't shut down cleanly. When the user leaves an application, its process is kept around in the background, allowing it to continue working (for example downloading web pages) if needed, and come immediately to the foreground if the user returns to it. If a device never runs out of memory, then Android will keep all of these processes around, truly leaving all applications "running" all of the time.

Of course, there is a limited amount of memory, and to accommodate this Android must decide when to get rid of processes that are not needed. This leads to Android's process lifecycle, the rules it uses to decide how important each process is and thus the next one that should be dropped. These rules are based on both how important a process is for the user's current experience, as well as how long it has been since the process was last needed by the user.

Once Android determines that it needs to remove a process, it does this brutally, simply force-killing it. The kernel can then immediately reclaim all resources needed by the process, without relying on that application being well written and responsive to a polite request to exit. Allowing the kernel to immediately reclaim application resources makes it a lot easier to avoid serious out of memory situations.

If a user later returns to an application that's been killed, Android needs a way to re-launch it in the same state as it was last seen, to preserve the "all applications are running all of the time" experience. This is done by keeping track of the parts of the application the user is aware of (the Activities), and re-starting them with information about the last state they were seen in. This last state is generated each time the user leaves that part of the application, not when it is killed, so that the kernel can later freely kill it without depending on the application to respond correctly at that point.

In some ways, Android's process management can be seen as a form of swap space: application processes represent a certain amount of in-use memory; when memory is low, some processes can be killed (swapped out); when those processes are needed again, they can be re-started from their last saved state (swapped in).

EXPLICITLY RUNNING IN THE BACKGROUND

So far, we have a way for applications to implicitly do work in the background, as long as the process doesn't get killed by Android as part of its regular memory management. This is fine for things like loading web pages in the background, but what about features with harder requirements? Background music playback, data synchronization, location tracking, alarm clocks, etc.

 

For these tasks, the application needs a way to tell Android "I would explicitly like to run at this point." There are two main facilities available to applications for this, represented by two kinds of components they can publish in their manifest: broadcast receivers and services.

Broadcast Receivers

A BroadcastReceiver allows an application to run, for a brief amount of time, in the background as a result of something else happening. It can be used in many ways to build higher-level facilities: for example the AlarmManager allows an application to have a broadcast sent at a certain time in the future, and the LocationManager can send a broadcast when it detects interesting changes in location. Because information about the receiver is part of an application's manifest, Android can find and launch the application even if it isn't running; of course if it already has its process available in the background, the broadcast can very efficiently be directly dispatched to it.

When handling a broadcast, the application is given a fixed set of time (currently 10 seconds) in which to do its work. If it doesn't complete in that time, the application is considered to be misbehaving, and its process immediately tossed into the background state to be killed for memory if needed.

Broadcast receivers are great for doing small pieces of work in response to an external stimulus, such as posting a notification to the user after being sent a new GPS location report. They are very lightweight, since the application's process only needs to be around while actively receiving the broadcast. Because they are active for a deterministic amount of time, fairly strong guarantees can be made about not killing their process while running. However they are not appropriate for anything of indeterminate length, such as networking.

Services

A Service allows an application to implement longer-running background operations. There are actually a lot of other functions that services provide, but for the discussion here their fundamental purpose is for an application to say "hey I would like to continue running even while in the background, until I say I am done." An application controls when its service runs by explicitly starting and stopping the service.

While services do provide a rich client-server model, its use is optional. Upon starting an application's services, Android simply instantiates the component in the application's process to provide its context. How it is used after that is up to the application: it can put all of the needed code inside of the service itself without interacting with other parts of the application, make calls on other singleton objects shared with other parts of the app, directly retrieve the Service instance from elsewhere if needed, or run it in another process and do a full-blown RPC protocol if that is desired.

Process management for services is different than broadcast receivers, because an unbounded number of services can ask to be running for an unknown amount of time. There may not be enough RAM to have all of the requesting services run, so as a result no strong guarantees are made about being able to keep them running.

If there is too little RAM, processes hosting services will be immediately killed like background processes are. However, if appropriate, Android will remember that these services wish to remain running, and restart their process at a later time when more RAM is available. For example, if the user goes to a web page that requires large amounts of RAM, Android may kill background service processes like sync until the browser's memory needs go down.

Services can further negotiate this behavior by requesting they be considered "foreground." This places the service in a "please don't kill" state, but requires that it include a notification to the user about it actively running. This is useful for services such as background music playback or car navigation, which the user is actively aware of; when you're playing music and using the browser, you can always see the music-playing glyph in the status bar. Android won't try to kill these services, but as a trade-off, ensures the user knows about them and is able to explicitly stop them when desired.

THE VALUE OF GENERIC COMPONENTS

Android's generic broadcast receiver and service components allow developers to create a wide variety of efficient background operations, including things that were never originally considered. In Android 1.0 they were used to implement nearly all of the background behavior that the built-in and proprietary Google apps provided:

  • Music playback runs in a service to allow it to continue operating after the user leaves the music application.

  • The alarm clock schedules a broadcast receiver with the alarm manager, to go off at the next set alarm time.

  • The calendar application likewise schedules an alarm to display or update its notification at the appropriate time for the next calendar event.

  • Background file download is implemented a service that runs when there are any downloads to process.

  • The e-mail application schedules an alarm to wake up a service at regular intervals that looks for and retrieves any new mail.

  • The Google applications maintain a service to receive push notifications from the network; it in turn sends broadcasts to individual apps when it is told that they need to do things like synchronize contacts.

As the platform has evolved, these same basic components have been used to implement many of the major new developer features:

  • Input methods are implemented by developers as a Service component that Android manages and works with to display as the current IME.

  • Application widgets are broadcast receivers that Android sends broadcasts to when it needs to interact with them. This allows app widgets to be quite lightweight, by not needing their application's process remain running.

  • Accessibility features are implemented as services that Android keeps running while in use and sends appropriate information to about user interactions.

  • Sync adapters introduced in Android 2.0 are services that are run in the background when a particular data sync needs to be performed.

  • Live wallpapers are a service started by Android when selected by the user.

分享到:
评论

相关推荐

    iOS.9.For.Users.and.Developers.B0151VT3KA

    Other changes include Keyboard changes, improvements to Search, changes to the way News is handled. Additionally, Updates to Siri, new features on Notes, Multitasking, System Fonts, updates in ...

    少儿编程scratch项目源代码文件案例素材-绝地求生.zip

    少儿编程scratch项目源代码文件案例素材-绝地求生.zip

    嵌入式八股文面试题库资料知识宝典-文思创新面试题2010-04-08.zip

    嵌入式八股文面试题库资料知识宝典-文思创新面试题2010-04-08.zip

    一种基于剪切波和特征信息检测的太阳斑点图融合算法.pdf

    一种基于剪切波和特征信息检测的太阳斑点图融合算法.pdf

    并联型APF有源电力滤波器Matlab Simulink仿真:dq与αβ坐标系下的谐波无功检测与PI控制及SVPWM调制

    内容概要:本文详细介绍了并联型有源电力滤波器(APF)在Matlab/Simulink环境下的仿真研究。主要内容涵盖三个关键技术点:一是dq与αβ坐标系下的谐波和无功检测,利用dq变换和FBD技术实现实时检测;二是两相旋转坐标系(dq)与两相静止坐标系(αβ)下的PI控制,通过调整比例和积分环节实现精准控制;三是SVPWM调制方式的应用,通过优化开关时序提升系统效率和性能。文中还提供了详细的仿真介绍文档,包括模型搭建、参数设定以及结果分析。 适合人群:从事电力电子、自动化控制领域的研究人员和技术人员,尤其是对电力滤波器仿真感兴趣的读者。 使用场景及目标:适用于需要深入了解并联型APF工作原理和实现方式的研究人员,旨在通过仿真工具掌握谐波和无功检测、PI控制及SVPWM调制的具体应用。 其他说明:本文不仅提供了理论知识,还结合了实际操作步骤,使读者能够通过仿真模型加深对APF的理解。

    Arduino KEY实验例程【正点原子ESP32S3】

    Arduino KEY实验例程,开发板:正点原子EPS32S3,本人主页有详细实验说明可供参考。

    嵌入式八股文面试题库资料知识宝典-嵌入式C语言面试题汇总(66页带答案).zip

    嵌入式八股文面试题库资料知识宝典-嵌入式C语言面试题汇总(66页带答案).zip

    .archivetempdebug.zip

    .archivetempdebug.zip

    嵌入式系统开发_CH551单片机_USB_HID复合设备模拟_基于CH551单片机的USB键盘鼠标复合设备模拟器项目_用于通过CH551微控制器模拟USB键盘和鼠标输入设备_实现硬.zip

    嵌入式系统开发_CH551单片机_USB_HID复合设备模拟_基于CH551单片机的USB键盘鼠标复合设备模拟器项目_用于通过CH551微控制器模拟USB键盘和鼠标输入设备_实现硬

    少儿编程scratch项目源代码文件案例素材-剑客冲刺.zip

    少儿编程scratch项目源代码文件案例素材-剑客冲刺.zip

    少儿编程scratch项目源代码文件案例素材-火影.zip

    少儿编程scratch项目源代码文件案例素材-火影.zip

    两极式单相光伏并网系统的Boost电路与桥式逆变仿真及优化方法

    内容概要:本文详细介绍了两极式单相光伏并网系统的组成及其仿真优化方法。前级采用Boost电路结合扰动观察法(P&O)进行最大功率点跟踪(MPPT),将光伏板输出电压提升至并网所需水平;后级利用全桥逆变加L型滤波以及电压外环电流内环控制,确保并网电流与电网电压同频同相,实现高效稳定的并网传输。文中还提供了具体的仿真技巧,如开关频率设置、L滤波参数计算和并网瞬间软启动等,最终实现了98.2%的系统效率和低于0.39%的总谐波失真率(THD)。 适合人群:从事光伏并网系统研究、设计和开发的技术人员,特别是对Boost电路、MPPT算法、逆变技术和双环控制系统感兴趣的工程师。 使用场景及目标:适用于希望深入了解两极式单相光伏并网系统的工作原理和技术细节的研究人员和工程师。目标是在实际项目中应用这些理论和技术,提高光伏并网系统的效率和稳定性。 其他说明:文中提供的仿真技巧和伪代码有助于读者更好地理解和实现相关算法,在实践中不断优化系统性能。同时,注意电网电压跌落时快速切换到孤岛模式的需求,确保系统的安全性和可靠性。

    昭通乡镇边界,矢量边界,shp格式

    矢量边界,行政区域边界,精确到乡镇街道,可直接导入arcgis使用

    嵌入式八股文面试题库资料知识宝典-嵌入式c面试.zip

    嵌入式八股文面试题库资料知识宝典-嵌入式c面试.zip

    嵌入式八股文面试题库资料知识宝典-I2C总线.zip

    嵌入式八股文面试题库资料知识宝典-I2C总线.zip

    岩土工程中随机裂隙网络注浆模型及其应用:不同压力下注浆效果的研究

    内容概要:本文详细介绍了三种注浆模型——随机裂隙网络注浆模型、基于两相达西定律的注浆模型、基于层流和水平集的注浆扩散模型。首先,随机裂隙网络注浆模型基于地质学原理,模拟裂隙网络发育的实际地质情况,在不同注浆压力下进行注浆作业,以增强地基稳定性和提高承载能力。其次,基于两相达西定律的注浆模型利用数学公式模拟裂隙网络中的流体输送过程,适用于裂隙网络地质条件下的注浆效果分析。最后,基于层流和水平集的注浆扩散模型通过引入层流特性和水平集方法,更准确地模拟注浆过程中的扩散过程。文中还讨论了不同注浆压力对注浆效果的影响,并提出了优化建议。 适合人群:从事岩土工程、地基加固等相关领域的工程师和技术人员。 使用场景及目标:①帮助工程师选择合适的注浆模型和注浆压力;②为实际工程项目提供理论支持和技术指导;③提升地基加固的效果和效率。 其他说明:文章强调了在实际应用中需要结合地质条件、裂隙网络特点等因素进行综合分析,以达到最佳注浆效果。同时,鼓励不断创新注浆工艺和方法,以满足日益增长的地基加固需求。

    COMSOL Multiphysics 5.5与6.0版本Ar棒板粗通道流注放电仿真的电子特性分析

    内容概要:本文详细比较了COMSOL Multiphysics软件5.5和6.0版本在模拟Ar棒板粗通道流注放电现象方面的异同。重点探讨了不同版本在处理电子密度、电子温度、电场强度以及三维视图等方面的优缺点。文中不仅介绍了各版本特有的操作方式和技术特点,还提供了具体的代码实例来展示如何进行精确的仿真设置。此外,文章还讨论了网格划分、三维数据提取和电场强度后处理等方面的技术难点及其解决方案。 适合人群:从事等离子体物理研究的专业人士,尤其是熟悉COMSOL Multiphysics软件并希望深入了解其最新特性的研究人员。 使用场景及目标:帮助用户选择合适的COMSOL版本进行高效、精确的等离子体仿真研究,特别是在处理复杂的Ar棒板粗通道流注放电现象时提供指导。 其他说明:文章强调了在实际应用中,选择COMSOL版本不仅要考虑便捷性和视觉效果,还需兼顾仿真精度和可控性。

    嵌入式八股文面试题库资料知识宝典-C and C++ normal interview_8.doc.zip

    嵌入式八股文面试题库资料知识宝典-C and C++ normal interview_8.doc.zip

    通信系统中波形优化与捷变频、PRT抗干扰技术及ISRJ联合优化的应用研究

    内容概要:本文详细介绍了在现代通信系统中,抗干扰技术的重要性和具体应用方法。首先阐述了抗干扰技术的背景及其重要性,随后分别讨论了捷变频技术和波形优化技术的具体机制和优势。捷变频技术能快速改变工作频率,防止被干扰源锁定;波形优化技术则通过改进信号波形来提升抗干扰性能。接着,文章探讨了两种技术相结合的协同效应,最后重点介绍了发射信号及接收滤波器联合优化的抗干扰策略(ISRJ),这是一种综合性优化手段,旨在最大化抗干扰效果并提高通信质量。 适合人群:从事通信工程及相关领域的研究人员和技术人员,尤其是关注抗干扰技术的专业人士。 使用场景及目标:适用于需要提升通信系统稳定性和可靠性的场合,如军事通信、卫星通信等领域。目标是帮助技术人员理解和掌握先进的抗干扰技术,应用于实际项目中。 其他说明:文中提到的技术不仅限于理论层面,还涉及具体的实施细节和应用场景,有助于读者深入理解并应用于实践中。

    少儿编程scratch项目源代码文件案例素材-吉他英雄.zip

    少儿编程scratch项目源代码文件案例素材-吉他英雄.zip

Global site tag (gtag.js) - Google Analytics