用iterator遍历集合时碰到java.util.ConcurrentModificationException这个异常, 下面以List为例来解释为什么会报java.util.ConcurrentModificationException这个异常,代码如下: Java代码 public static void main(String[] args) { List<String> list = new ArrayList<String>(); list.add("1"); list.add("2"); list.add("3"); list.add("4"); list.add("5"); list.add("6"); list.add("7"); List<String> del = new ArrayList<String>(); del.add("5"); del.add("6"); del.add("7"); <span style="color: #ff0000;">for(String str : list){ if(del.contains(str)) { list.remove(str); } }</span> } 运行这段代码会出现如下异常: Java代码 Exception in thread "main" java.util.ConcurrentModificationException for(String str : list) 这句话实际上是用到了集合的iterator() 方法 JDK java.util. AbstractList类中相关源码 Java代码 public Iterator<E> iterator() { return new Itr(); } java.util. AbstractList的内部类Itr的源码如下: Java代码 private class Itr implements Iterator<E> { /** * Index of element to be returned by subsequent call to next. */ int cursor = 0; /** * Index of element returned by most recent call to next or * previous. Reset to -1 if this element is deleted by a call * to remove. */ int lastRet = -1; /** * The modCount value that the iterator believes that the backing * List should have. If this expectation is violated, the iterator * has detected concurrent modification. */ int expectedModCount = modCount; public boolean hasNext() { return cursor != size(); } public E next() { checkForComodification(); //检测modCount和expectedModCount的值!! try { E next = get(cursor); lastRet = cursor++; return next; } catch (IndexOutOfBoundsException e) { checkForComodification(); throw new NoSuchElementException(); } } public void remove() { if (lastRet == -1) throw new IllegalStateException(); checkForComodification(); try { AbstractList.this.remove(lastRet); //执行remove的操作 if (lastRet < cursor) cursor--; lastRet = -1; expectedModCount = modCount; //保证了modCount和expectedModCount的值的一致性,避免抛出ConcurrentModificationException异常 } catch (IndexOutOfBoundsException e) { throw new ConcurrentModificationException(); } } final void checkForComodification() { if (modCount != expectedModCount) //当modCount和expectedModCount值不相等时,则抛出ConcurrentModificationException异常 throw new ConcurrentModificationException(); } } 再看一下ArrayList 的 remove方法 Java代码 public boolean remove(Object o) { if (o == null) { for (int index = 0; index < size; index++) if (elementData[index] == null) { fastRemove(index); return true; } } else { for (int index = 0; index < size; index++) if (o.equals(elementData[index])) { fastRemove(index); return true; } } return false; } /* * Private remove method that skips bounds checking and does not * return the value removed. */ private void fastRemove(int index) { modCount++; //只是修改了modCount,因此modCount将与expectedModCount的值不一致 int numMoved = size - index - 1; if (numMoved > 0) System.arraycopy(elementData, index+1, elementData, index, numMoved); elementData[--size] = null; // Let gc do its work } 回过头去看看java.util. AbstractList的next()方法 Java代码 public E next() { checkForComodification(); //检测modCount和expectedModCount的值!! try { E next = get(cursor); lastRet = cursor++; return next; } catch (IndexOutOfBoundsException e) { checkForComodification(); throw new NoSuchElementException(); } } final void checkForComodification() { if (modCount != expectedModCount) //当modCount和expectedModCount值不相等时,则抛出ConcurrentModificationException异常 throw new ConcurrentModificationException(); } } 现在真相终于大白了,ArrayList的remove方法只是修改了modCount的值,并没有修改expectedModCount,导致modCount和expectedModCount的值的不一致性,当next()时则抛出ConcurrentModificationException异常 因此使用Iterator遍历集合时,不要改动被迭代的对象,可以使用 Iterator 本身的方法 remove() 来删除对象, Iterator.remove() 方法会在删除当前迭代对象的同时维护modCount和expectedModCount值的一致性。 解决办法如下: (1) 新建一个集合存放要删除的对象,等遍历完后,调用removeAll(Collection<?> c)方法 把上面例子中迭代集合的代码替换成: Java代码 List<String> save = new ArrayList<String>(); for(String str : list) { if(del.contains(str)) { save.add(str); } } list.removeAll(save); (2) 使用Iterator替代增强型for循环: Java代码 Iterator<String> iterator = list.iterator(); while(iterator.hasNext()) { String str = iterator.next(); if(del.contains(str)) { iterator.remove(); } } Iterator.remove()方法保证了modCount和expectedModCount的值的一致性,避免抛出ConcurrentModificationException异常。 不过对于在多线程环境下对集合类元素进行迭代修改操作,最好把代码放在一个同步代码块内,这样才能保证modCount和expectedModCount的值的一致性,类似如下: Java代码 Iterator<String> iterator = list.iterator(); synchronized(synObject) { while(iterator.hasNext()) { String str = iterator.next(); if(del.contains(str)) { iterator.remove(); } } } 因为迭代器实现类如:ListItr的next(),previous(),remove(),set(E e),add(E e)这些方法都会调用checkForComodification(),源码: Java代码 final void checkForComodification() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); } 曾经写了下面这段对HashMap进行迭代删除操作的错误的代码: Java代码 Iterator<Integer> iterator = windows.keySet().iterator(); while(iterator.hasNext()) { int type = iterator.next(); windows.get(type).closeWindow(); iterator.remove(); windows.remove(type); // } 上面的代码也会导致ConcurrentModificationException的发生。罪魁祸首是windows.remove(type);这一句。 根据上面的分析我们知道iterator.remove();会维护modCount和expectedModCount的值的一致性,而windows.remove(type);这句是不会的。其实这句是多余的,上面的代码去掉这句就行了。 iterator.remove()的源码如下:HashIterator类的remove()方法 Java代码 public void remove() { if (lastEntryReturned == null) throw new IllegalStateException(); if (modCount != expectedModCount) throw new ConcurrentModificationException(); HashMap.this.remove(lastEntryReturned.key); lastEntryReturned = null; expectedModCount = modCount; //保证了这两值的一致性 } HashMap.this.remove(lastEntryReturned.key);这句代码说明windows.remove(type);是多余的,因为已经删除了该key对应的value。 windows.remove(type)的源码: Java代码 public V remove(Object key) { if (key == null) { return removeNullKey(); } int hash = secondaryHash(key.hashCode()); HashMapEntry<K, V>[] tab = table; int index = hash & (tab.length - 1); for (HashMapEntry<K, V> e = tab[index], prev = null; e != null; prev = e, e = e.next) { if (e.hash == hash && key.equals(e.key)) { if (prev == null) { tab[index] = e.next; } else { prev.next = e.next; } modCount++; size--; postRemove(e); return e.value; } } return null; } 上面的代码中,由于先调用了iterator.remove();所以再调用HashMap的remove方法时,key就已经为null了,所以会执行:removeNullKey(); 方法,removeNullKey()源码: Java代码 private V removeNullKey() { HashMapEntry<K, V> e = entryForNullKey; if (e == null) { return null; } entryForNullKey = null; modCount++; size--; postRemove(e); return e.value; } 不过不管是执行removeNullKey()还是key != null,如果直接调用HashMap的remove方法,都会导致ConcurrentModificationException 这个异常的发生,因为它对modCount++;没有改变expectedModCount的值,没有维护维护索引的一致性。 下面引用一段更专业的解释: Iterator 是工作在一个独立的线程中,并且拥有一个 mutex 锁。 Iterator 被创建之后会建立一个指向原来对象的单链索引表,当原来的对象数量发生变化时,这个索引表的内容不会同步改变,所以当索引指针往后移动的时候就找不到要迭代的对象,所以按照 fail-fast 原则 Iterator 会马上抛出 java.util.ConcurrentModificationException 异常。 所以 Iterator 在工作的时候是不允许被迭代的对象被改变的。但你可以使用 Iterator 本身的方法 remove() 来删除对象, Iterator.remove() 方法会在删除当前迭代对象的同时维护索引的一致性。
相关推荐
内容概要:本文全面介绍了Scratch编程语言,包括其历史、发展、特点、主要组件以及如何进行基本和进阶编程操作。通过具体示例,展示了如何利用代码块制作动画、游戏和音乐艺术作品,并介绍了物理模拟、网络编程和扩展库等功能。 适合人群:编程初学者、教育工作者、青少年学生及对编程感兴趣的各年龄段用户。 使用场景及目标:①帮助初学者理解编程的基本概念和逻辑;②提高学生的创造力、逻辑思维能力和问题解决能力;③引导用户通过实践掌握Scratch的基本和高级功能,制作个性化作品。 其他说明:除了基础教学,文章还提供了丰富的学习资源和社区支持,帮助用户进一步提升技能。
mmexport1734874094130.jpg
基于simulink的悬架仿真模型,有主动悬架被动悬架天棚控制半主动悬架 [1]基于pid控制的四自由度主被动悬架仿真模型 [2]基于模糊控制的二自由度仿真模型,对比pid控制对比被动控制,的比较说明 [3]基于天棚控制的二自由度悬架仿真 以上模型,说明文档齐全,仿真效果明显
内容概要:本文档是《组合数学答案-网络流传版.pdf》的内容,主要包含了排列组合的基础知识以及一些经典的组合数学题目。这些题目涵盖了从排列数计算、二项式定理的应用到容斥原理的实际应用等方面。通过对这些题目的解析,帮助读者加深对组合数学概念和技巧的理解。 适用人群:适合初学者和有一定基础的学习者。 使用场景及目标:可以在学习组合数学课程时作为练习题参考,也可以在复习考试或准备竞赛时使用,目的是提高解决组合数学问题的能力。 其他说明:文档中的题目覆盖了组合数学的基本知识点,适合逐步深入学习。每个题目都有详细的解答步骤,有助于读者掌握解题思路和方法。
YOLO系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中,文件名末尾是部分类别名称; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值; 【注】可以下拉页面,在资源详情处查看标签具体内容;
操作系统实验 Ucore lab5
基于matlab开发的学生成绩管理系统GUI界面,可以实现学生成绩载入,显示,处理及查询。
老版本4.0固件,(.dav固件包),支持7700N-K4,7900N-K4等K51平台,升级后出现异常或变砖可使用此版本。请核对自己的机器信息,确认适用后在下载。
YOLO系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中,文件名末尾是部分类别名称; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值; 【注】可以下拉页面,在资源详情处查看标签具体内容;
YOLO算法-杂草检测项目数据集-3970张图像带标签-杂草.zip
E008 库洛米(3页).zip
内容概要:本文详细阐述了基于西门子PLC的晶圆研磨机自动控制系统的设计与实现。该系统结合了传感器技术、电机驱动技术和人机界面技术,实现了晶圆研磨过程的高精度和高效率控制。文中详细介绍了控制系统的硬件选型与设计、软件编程与功能实现,通过实验测试和实际应用案例验证了系统的稳定性和可靠性。 适合人群:具备一定的自动化控制和机械设计基础的工程师、研究人员以及从事半导体制造的技术人员。 使用场景及目标:本研究为半导体制造企业提供了一种有效的自动化解决方案,旨在提高晶圆研磨的质量和生产效率,降低劳动强度和生产成本。系统适用于不同规格晶圆的研磨作业,可以实现高精度、高效率、自动化的晶圆研磨过程。 阅读建议:阅读本文时,重点关注晶圆研磨工艺流程和技术要求,控制系统的硬件和软件设计方法,以及实验测试和结果分析。这将有助于读者理解和掌握该自动控制系统的实现原理和应用价值。
YOLO系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中,文件名末尾是部分类别名称; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值; 【注】可以下拉页面,在资源详情处查看标签具体内容;
深圳建筑安装公司“挖掘机安全操作规程”
YOLO系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中,文件名末尾是部分类别名称; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值; 【注】可以下拉页面,在资源详情处查看标签具体内容;
大题解题方法等4个文件.zip
保障性安居工程考评内容和评价标准.docx
监督机构检查记录表.docx
该项目适合初学者进行学习,有效的掌握java、swing、mysql等技术的基础知识。资源包含源码、视频和文档 资源下载|如果你正在做毕业设计,需要源码和论文,各类课题都可以,私聊我。 商务合作|如果你是在校大学生,正好你又懂语言编程,或者你可以找来需要做毕设的伙伴,私聊我。。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
218) Leverage - 创意机构与作品集 WordPress 主题 2.2.7.zip