- 浏览: 2267526 次
- 性别:
- 来自: 北京
文章分类
- 全部博客 (423)
- FileNet相关 (3)
- 应用服务器相关 (22)
- Java综合 (77)
- 持久层 (24)
- struts (11)
- webservice (8)
- 虚拟机 (2)
- 光盘刻录 (0)
- AD及AD集群 (1)
- JS (33)
- F5 (0)
- loadrunner8.1 (0)
- Java 反编译工具 (2)
- DataBase (62)
- ant (1)
- 操作系统 (29)
- 我的任务 (3)
- 平台架构 (16)
- 业务规则引擎 (2)
- 模板 (1)
- EJB (5)
- spring (24)
- CMMI (1)
- 项目管理 (20)
- LDAP (13)
- JMS (10)
- JSP (19)
- JBPM (2)
- web MVC框架设计思想 (2)
- 第三方支付平台 (2)
- BUG管理工具 (1)
- 垃圾站 (2)
- php (1)
- swing (1)
- 书籍 (1)
- QQ qq (2)
- 移动互联网 (26)
- 爱听的歌曲 (0)
- hadoop (4)
- 数据库 (9)
- 设计模式 (1)
- 面试经验只谈 (1)
- 大数据 (9)
- sp (1)
- 缓存数据库 (8)
- storm (2)
- taobao (2)
- 分布式,高并发,大型互联网,负载均衡 (6)
- Apache Ignite (0)
- Docker & K8S (0)
最新评论
-
wangyudong:
新版本 Wisdom RESTClienthttps://gi ...
spring rest mvc使用RestTemplate调用 -
wangyudong:
很多API doc生成工具生成API文档需要引入第三方依赖,重 ...
spring rest mvc使用RestTemplate调用 -
zhaoshijie:
cfying 写道大侠,还是加载了两次,怎么解决啊?求。QQ: ...
spring容器加载完毕做一件事情(利用ContextRefreshedEvent事件) -
xinglianxlxl:
对我有用,非常感谢
spring容器加载完毕做一件事情(利用ContextRefreshedEvent事件) -
k_caesar:
多谢,学习了
利用maven的resources、filter和profile实现不同环境使用不同配置文件
关键字:Redis的Java客户端Jedis的八种调用方式(事务、管道、分布式…)介绍
Tags: redis, jedis, 事务, 管道, 分布式, 连接池
redis是一个著名的key-value存储系统,而作为其官方推荐的java版客户端jedis也非常强大和稳定,支持事务、管道及有jedis自身实现的分布式。
在这里对jedis关于事务、管道和分布式的调用方式做一个简单的介绍和对比:
一、普通同步方式
最简单和基础的调用方式,
@Test
public void test1Normal() {
Jedis jedis = new Jedis("localhost");
long start = System.currentTimeMillis();
for (int i = 0; i < 100000; i++) {
String result = jedis.set("n" + i, "n" + i);
}
long end = System.currentTimeMillis();
System.out.println("Simple SET: " + ((end - start)/1000.0) + " seconds");
jedis.disconnect();
}
很简单吧,每次set之后都可以返回结果,标记是否成功。
二、事务方式(Transactions)
redis的事务很简单,他主要目的是保障,一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。
看下面例子:
@Test
public void test2Trans() {
Jedis jedis = new Jedis("localhost");
long start = System.currentTimeMillis();
Transaction tx = jedis.multi();
for (int i = 0; i < 100000; i++) {
tx.set("t" + i, "t" + i);
}
List<Object> results = tx.exec();
long end = System.currentTimeMillis();
System.out.println("Transaction SET: " + ((end - start)/1000.0) + " seconds");
jedis.disconnect();
}
我们调用jedis.watch(…)方法来监控key,如果调用后key值发生变化,则整个事务会执行失败。另外,事务中某个操作失败,并不会回滚其他操作。这一点需要注意。还有,我们可以使用discard()方法来取消事务。
三、管道(Pipelining)
有时,我们需要采用异步方式,一次发送多个指令,不同步等待其返回结果。这样可以取得非常好的执行效率。这就是管道,调用方法如下:
@Test
public void test3Pipelined() {
Jedis jedis = new Jedis("localhost");
Pipeline pipeline = jedis.pipelined();
long start = System.currentTimeMillis();
for (int i = 0; i < 100000; i++) {
pipeline.set("p" + i, "p" + i);
}
List<Object> results = pipeline.syncAndReturnAll();
long end = System.currentTimeMillis();
System.out.println("Pipelined SET: " + ((end - start)/1000.0) + " seconds");
jedis.disconnect();
}
四、管道中调用事务
就Jedis提供的方法而言,是可以做到在管道中使用事务,其代码如下:
@Test
public void test4combPipelineTrans() {
jedis = new Jedis("localhost");
long start = System.currentTimeMillis();
Pipeline pipeline = jedis.pipelined();
pipeline.multi();
for (int i = 0; i < 100000; i++) {
pipeline.set("" + i, "" + i);
}
pipeline.exec();
List<Object> results = pipeline.syncAndReturnAll();
long end = System.currentTimeMillis();
System.out.println("Pipelined transaction: " + ((end - start)/1000.0) + " seconds");
jedis.disconnect();
}
但是经测试(见本文后续部分),发现其效率和单独使用事务差不多,甚至还略微差点。
五、分布式直连同步调用
@Test
public void test5shardNormal() {
List<JedisShardInfo> shards = Arrays.asList(
new JedisShardInfo("localhost",6379),
new JedisShardInfo("localhost",6380));
ShardedJedis sharding = new ShardedJedis(shards);
long start = System.currentTimeMillis();
for (int i = 0; i < 100000; i++) {
String result = sharding.set("sn" + i, "n" + i);
}
long end = System.currentTimeMillis();
System.out.println("Simple@Sharing SET: " + ((end - start)/1000.0) + " seconds");
sharding.disconnect();
}
这个是分布式直接连接,并且是同步调用,每步执行都返回执行结果。类似地,还有异步管道调用。
六、分布式直连异步调用
@Test
public void test6shardpipelined() {
List<JedisShardInfo> shards = Arrays.asList(
new JedisShardInfo("localhost",6379),
new JedisShardInfo("localhost",6380));
ShardedJedis sharding = new ShardedJedis(shards);
ShardedJedisPipeline pipeline = sharding.pipelined();
long start = System.currentTimeMillis();
for (int i = 0; i < 100000; i++) {
pipeline.set("sp" + i, "p" + i);
}
List<Object> results = pipeline.syncAndReturnAll();
long end = System.currentTimeMillis();
System.out.println("Pipelined@Sharing SET: " + ((end - start)/1000.0) + " seconds");
sharding.disconnect();
}
七、分布式连接池同步调用
如果,你的分布式调用代码是运行在线程中,那么上面两个直连调用方式就不合适了,因为直连方式是非线程安全的,这个时候,你就必须选择连接池调用。
@Test
public void test7shardSimplePool() {
List<JedisShardInfo> shards = Arrays.asList(
new JedisShardInfo("localhost",6379),
new JedisShardInfo("localhost",6380));
ShardedJedisPool pool = new ShardedJedisPool(new JedisPoolConfig(), shards);
ShardedJedis one = pool.getResource();
long start = System.currentTimeMillis();
for (int i = 0; i < 100000; i++) {
String result = one.set("spn" + i, "n" + i);
}
long end = System.currentTimeMillis();
pool.returnResource(one);
System.out.println("Simple@Pool SET: " + ((end - start)/1000.0) + " seconds");
pool.destroy();
}
上面是同步方式,当然还有异步方式。
八、分布式连接池异步调用
@Test
public void test8shardPipelinedPool() {
List<JedisShardInfo> shards = Arrays.asList(
new JedisShardInfo("localhost",6379),
new JedisShardInfo("localhost",6380));
ShardedJedisPool pool = new ShardedJedisPool(new JedisPoolConfig(), shards);
ShardedJedis one = pool.getResource();
ShardedJedisPipeline pipeline = one.pipelined();
long start = System.currentTimeMillis();
for (int i = 0; i < 100000; i++) {
pipeline.set("sppn" + i, "n" + i);
}
List<Object> results = pipeline.syncAndReturnAll();
long end = System.currentTimeMillis();
pool.returnResource(one);
System.out.println("Pipelined@Pool SET: " + ((end - start)/1000.0) + " seconds");
pool.destroy();
}
九、需要注意的地方
事务和管道都是异步模式。在事务和管道中不能同步查询结果。比如下面两个调用,都是不允许的:
Transaction tx = jedis.multi();
for (int i = 0; i < 100000; i++) {
tx.set("t" + i, "t" + i);
}
System.out.println(tx.get("t1000").get()); //不允许
List<Object> results = tx.exec();
…
…
Pipeline pipeline = jedis.pipelined();
long start = System.currentTimeMillis();
for (int i = 0; i < 100000; i++) {
pipeline.set("p" + i, "p" + i);
}
System.out.println(pipeline.get("p1000").get()); //不允许
List<Object> results = pipeline.syncAndReturnAll();
事务和管道都是异步的,个人感觉,在管道中再进行事务调用,没有必要,不如直接进行事务模式。
分布式中,连接池的性能比直连的性能略好(见后续测试部分)。
分布式调用中不支持事务。
因为事务是在服务器端实现,而在分布式中,每批次的调用对象都可能访问不同的机器,所以,没法进行事务。
十、测试
运行上面的代码,进行测试,其结果如下:
Simple SET: 5.227 seconds
Transaction SET: 0.5 seconds
Pipelined SET: 0.353 seconds
Pipelined transaction: 0.509 seconds
Simple@Sharing SET: 5.289 seconds
Pipelined@Sharing SET: 0.348 seconds
Simple@Pool SET: 5.039 seconds
Pipelined@Pool SET: 0.401 seconds
另外,经测试分布式中用到的机器越多,调用会越慢。上面是2片,下面是5片:
Simple@Sharing SET: 5.494 seconds
Pipelined@Sharing SET: 0.51 seconds
Simple@Pool SET: 5.223 seconds
Pipelined@Pool SET: 0.518 seconds
下面是10片:
Simple@Sharing SET: 5.9 seconds
Pipelined@Sharing SET: 0.794 seconds
Simple@Pool SET: 5.624 seconds
Pipelined@Pool SET: 0.762 seconds
下面是100片:
Simple@Sharing SET: 14.055 seconds
Pipelined@Sharing SET: 8.185 seconds
Simple@Pool SET: 13.29 seconds
Pipelined@Pool SET: 7.767 seconds
分布式中,连接池方式调用不但线程安全外,根据上面的测试数据,也可以看出连接池比直连的效率更好。
十一、完整的测试代码
package com.example.nosqlclient;
import java.util.Arrays;
import java.util.List;
import org.junit.AfterClass;
import org.junit.BeforeClass;
import org.junit.Test;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPoolConfig;
import redis.clients.jedis.JedisShardInfo;
import redis.clients.jedis.Pipeline;
import redis.clients.jedis.ShardedJedis;
import redis.clients.jedis.ShardedJedisPipeline;
import redis.clients.jedis.ShardedJedisPool;
import redis.clients.jedis.Transaction;
import org.junit.FixMethodOrder;
import org.junit.runners.MethodSorters;
@FixMethodOrder(MethodSorters.NAME_ASCENDING)
public class TestJedis {
private static Jedis jedis;
private static ShardedJedis sharding;
private static ShardedJedisPool pool;
@BeforeClass
public static void setUpBeforeClass() throws Exception {
List<JedisShardInfo> shards = Arrays.asList(
new JedisShardInfo("localhost",6379),
new JedisShardInfo("localhost",6379)); //使用相同的ip:port,仅作测试
jedis = new Jedis("localhost");
sharding = new ShardedJedis(shards);
pool = new ShardedJedisPool(new JedisPoolConfig(), shards);
}
@AfterClass
public static void tearDownAfterClass() throws Exception {
jedis.disconnect();
sharding.disconnect();
pool.destroy();
}
@Test
public void test1Normal() {
long start = System.currentTimeMillis();
for (int i = 0; i < 100000; i++) {
String result = jedis.set("n" + i, "n" + i);
}
long end = System.currentTimeMillis();
System.out.println("Simple SET: " + ((end - start)/1000.0) + " seconds");
}
@Test
public void test2Trans() {
long start = System.currentTimeMillis();
Transaction tx = jedis.multi();
for (int i = 0; i < 100000; i++) {
tx.set("t" + i, "t" + i);
}
//System.out.println(tx.get("t1000").get());
List<Object> results = tx.exec();
long end = System.currentTimeMillis();
System.out.println("Transaction SET: " + ((end - start)/1000.0) + " seconds");
}
@Test
public void test3Pipelined() {
Pipeline pipeline = jedis.pipelined();
long start = System.currentTimeMillis();
for (int i = 0; i < 100000; i++) {
pipeline.set("p" + i, "p" + i);
}
//System.out.println(pipeline.get("p1000").get());
List<Object> results = pipeline.syncAndReturnAll();
long end = System.currentTimeMillis();
System.out.println("Pipelined SET: " + ((end - start)/1000.0) + " seconds");
}
@Test
public void test4combPipelineTrans() {
long start = System.currentTimeMillis();
Pipeline pipeline = jedis.pipelined();
pipeline.multi();
for (int i = 0; i < 100000; i++) {
pipeline.set("" + i, "" + i);
}
pipeline.exec();
List<Object> results = pipeline.syncAndReturnAll();
long end = System.currentTimeMillis();
System.out.println("Pipelined transaction: " + ((end - start)/1000.0) + " seconds");
}
@Test
public void test5shardNormal() {
long start = System.currentTimeMillis();
for (int i = 0; i < 100000; i++) {
String result = sharding.set("sn" + i, "n" + i);
}
long end = System.currentTimeMillis();
System.out.println("Simple@Sharing SET: " + ((end - start)/1000.0) + " seconds");
}
@Test
public void test6shardpipelined() {
ShardedJedisPipeline pipeline = sharding.pipelined();
long start = System.currentTimeMillis();
for (int i = 0; i < 100000; i++) {
pipeline.set("sp" + i, "p" + i);
}
List<Object> results = pipeline.syncAndReturnAll();
long end = System.currentTimeMillis();
System.out.println("Pipelined@Sharing SET: " + ((end - start)/1000.0) + " seconds");
}
@Test
public void test7shardSimplePool() {
ShardedJedis one = pool.getResource();
long start = System.currentTimeMillis();
for (int i = 0; i < 100000; i++) {
String result = one.set("spn" + i, "n" + i);
}
long end = System.currentTimeMillis();
pool.returnResource(one);
System.out.println("Simple@Pool SET: " + ((end - start)/1000.0) + " seconds");
}
@Test
public void test8shardPipelinedPool() {
ShardedJedis one = pool.getResource();
ShardedJedisPipeline pipeline = one.pipelined();
long start = System.currentTimeMillis();
for (int i = 0; i < 100000; i++) {
pipeline.set("sppn" + i, "n" + i);
}
List<Object> results = pipeline.syncAndReturnAll();
long end = System.currentTimeMillis();
pool.returnResource(one);
System.out.println("Pipelined@Pool SET: " + ((end - start)/1000.0) + " seconds");
}
}
Tags: redis, jedis, 事务, 管道, 分布式, 连接池
redis是一个著名的key-value存储系统,而作为其官方推荐的java版客户端jedis也非常强大和稳定,支持事务、管道及有jedis自身实现的分布式。
在这里对jedis关于事务、管道和分布式的调用方式做一个简单的介绍和对比:
一、普通同步方式
最简单和基础的调用方式,
@Test
public void test1Normal() {
Jedis jedis = new Jedis("localhost");
long start = System.currentTimeMillis();
for (int i = 0; i < 100000; i++) {
String result = jedis.set("n" + i, "n" + i);
}
long end = System.currentTimeMillis();
System.out.println("Simple SET: " + ((end - start)/1000.0) + " seconds");
jedis.disconnect();
}
很简单吧,每次set之后都可以返回结果,标记是否成功。
二、事务方式(Transactions)
redis的事务很简单,他主要目的是保障,一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。
看下面例子:
@Test
public void test2Trans() {
Jedis jedis = new Jedis("localhost");
long start = System.currentTimeMillis();
Transaction tx = jedis.multi();
for (int i = 0; i < 100000; i++) {
tx.set("t" + i, "t" + i);
}
List<Object> results = tx.exec();
long end = System.currentTimeMillis();
System.out.println("Transaction SET: " + ((end - start)/1000.0) + " seconds");
jedis.disconnect();
}
我们调用jedis.watch(…)方法来监控key,如果调用后key值发生变化,则整个事务会执行失败。另外,事务中某个操作失败,并不会回滚其他操作。这一点需要注意。还有,我们可以使用discard()方法来取消事务。
三、管道(Pipelining)
有时,我们需要采用异步方式,一次发送多个指令,不同步等待其返回结果。这样可以取得非常好的执行效率。这就是管道,调用方法如下:
@Test
public void test3Pipelined() {
Jedis jedis = new Jedis("localhost");
Pipeline pipeline = jedis.pipelined();
long start = System.currentTimeMillis();
for (int i = 0; i < 100000; i++) {
pipeline.set("p" + i, "p" + i);
}
List<Object> results = pipeline.syncAndReturnAll();
long end = System.currentTimeMillis();
System.out.println("Pipelined SET: " + ((end - start)/1000.0) + " seconds");
jedis.disconnect();
}
四、管道中调用事务
就Jedis提供的方法而言,是可以做到在管道中使用事务,其代码如下:
@Test
public void test4combPipelineTrans() {
jedis = new Jedis("localhost");
long start = System.currentTimeMillis();
Pipeline pipeline = jedis.pipelined();
pipeline.multi();
for (int i = 0; i < 100000; i++) {
pipeline.set("" + i, "" + i);
}
pipeline.exec();
List<Object> results = pipeline.syncAndReturnAll();
long end = System.currentTimeMillis();
System.out.println("Pipelined transaction: " + ((end - start)/1000.0) + " seconds");
jedis.disconnect();
}
但是经测试(见本文后续部分),发现其效率和单独使用事务差不多,甚至还略微差点。
五、分布式直连同步调用
@Test
public void test5shardNormal() {
List<JedisShardInfo> shards = Arrays.asList(
new JedisShardInfo("localhost",6379),
new JedisShardInfo("localhost",6380));
ShardedJedis sharding = new ShardedJedis(shards);
long start = System.currentTimeMillis();
for (int i = 0; i < 100000; i++) {
String result = sharding.set("sn" + i, "n" + i);
}
long end = System.currentTimeMillis();
System.out.println("Simple@Sharing SET: " + ((end - start)/1000.0) + " seconds");
sharding.disconnect();
}
这个是分布式直接连接,并且是同步调用,每步执行都返回执行结果。类似地,还有异步管道调用。
六、分布式直连异步调用
@Test
public void test6shardpipelined() {
List<JedisShardInfo> shards = Arrays.asList(
new JedisShardInfo("localhost",6379),
new JedisShardInfo("localhost",6380));
ShardedJedis sharding = new ShardedJedis(shards);
ShardedJedisPipeline pipeline = sharding.pipelined();
long start = System.currentTimeMillis();
for (int i = 0; i < 100000; i++) {
pipeline.set("sp" + i, "p" + i);
}
List<Object> results = pipeline.syncAndReturnAll();
long end = System.currentTimeMillis();
System.out.println("Pipelined@Sharing SET: " + ((end - start)/1000.0) + " seconds");
sharding.disconnect();
}
七、分布式连接池同步调用
如果,你的分布式调用代码是运行在线程中,那么上面两个直连调用方式就不合适了,因为直连方式是非线程安全的,这个时候,你就必须选择连接池调用。
@Test
public void test7shardSimplePool() {
List<JedisShardInfo> shards = Arrays.asList(
new JedisShardInfo("localhost",6379),
new JedisShardInfo("localhost",6380));
ShardedJedisPool pool = new ShardedJedisPool(new JedisPoolConfig(), shards);
ShardedJedis one = pool.getResource();
long start = System.currentTimeMillis();
for (int i = 0; i < 100000; i++) {
String result = one.set("spn" + i, "n" + i);
}
long end = System.currentTimeMillis();
pool.returnResource(one);
System.out.println("Simple@Pool SET: " + ((end - start)/1000.0) + " seconds");
pool.destroy();
}
上面是同步方式,当然还有异步方式。
八、分布式连接池异步调用
@Test
public void test8shardPipelinedPool() {
List<JedisShardInfo> shards = Arrays.asList(
new JedisShardInfo("localhost",6379),
new JedisShardInfo("localhost",6380));
ShardedJedisPool pool = new ShardedJedisPool(new JedisPoolConfig(), shards);
ShardedJedis one = pool.getResource();
ShardedJedisPipeline pipeline = one.pipelined();
long start = System.currentTimeMillis();
for (int i = 0; i < 100000; i++) {
pipeline.set("sppn" + i, "n" + i);
}
List<Object> results = pipeline.syncAndReturnAll();
long end = System.currentTimeMillis();
pool.returnResource(one);
System.out.println("Pipelined@Pool SET: " + ((end - start)/1000.0) + " seconds");
pool.destroy();
}
九、需要注意的地方
事务和管道都是异步模式。在事务和管道中不能同步查询结果。比如下面两个调用,都是不允许的:
Transaction tx = jedis.multi();
for (int i = 0; i < 100000; i++) {
tx.set("t" + i, "t" + i);
}
System.out.println(tx.get("t1000").get()); //不允许
List<Object> results = tx.exec();
…
…
Pipeline pipeline = jedis.pipelined();
long start = System.currentTimeMillis();
for (int i = 0; i < 100000; i++) {
pipeline.set("p" + i, "p" + i);
}
System.out.println(pipeline.get("p1000").get()); //不允许
List<Object> results = pipeline.syncAndReturnAll();
事务和管道都是异步的,个人感觉,在管道中再进行事务调用,没有必要,不如直接进行事务模式。
分布式中,连接池的性能比直连的性能略好(见后续测试部分)。
分布式调用中不支持事务。
因为事务是在服务器端实现,而在分布式中,每批次的调用对象都可能访问不同的机器,所以,没法进行事务。
十、测试
运行上面的代码,进行测试,其结果如下:
Simple SET: 5.227 seconds
Transaction SET: 0.5 seconds
Pipelined SET: 0.353 seconds
Pipelined transaction: 0.509 seconds
Simple@Sharing SET: 5.289 seconds
Pipelined@Sharing SET: 0.348 seconds
Simple@Pool SET: 5.039 seconds
Pipelined@Pool SET: 0.401 seconds
另外,经测试分布式中用到的机器越多,调用会越慢。上面是2片,下面是5片:
Simple@Sharing SET: 5.494 seconds
Pipelined@Sharing SET: 0.51 seconds
Simple@Pool SET: 5.223 seconds
Pipelined@Pool SET: 0.518 seconds
下面是10片:
Simple@Sharing SET: 5.9 seconds
Pipelined@Sharing SET: 0.794 seconds
Simple@Pool SET: 5.624 seconds
Pipelined@Pool SET: 0.762 seconds
下面是100片:
Simple@Sharing SET: 14.055 seconds
Pipelined@Sharing SET: 8.185 seconds
Simple@Pool SET: 13.29 seconds
Pipelined@Pool SET: 7.767 seconds
分布式中,连接池方式调用不但线程安全外,根据上面的测试数据,也可以看出连接池比直连的效率更好。
十一、完整的测试代码
package com.example.nosqlclient;
import java.util.Arrays;
import java.util.List;
import org.junit.AfterClass;
import org.junit.BeforeClass;
import org.junit.Test;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPoolConfig;
import redis.clients.jedis.JedisShardInfo;
import redis.clients.jedis.Pipeline;
import redis.clients.jedis.ShardedJedis;
import redis.clients.jedis.ShardedJedisPipeline;
import redis.clients.jedis.ShardedJedisPool;
import redis.clients.jedis.Transaction;
import org.junit.FixMethodOrder;
import org.junit.runners.MethodSorters;
@FixMethodOrder(MethodSorters.NAME_ASCENDING)
public class TestJedis {
private static Jedis jedis;
private static ShardedJedis sharding;
private static ShardedJedisPool pool;
@BeforeClass
public static void setUpBeforeClass() throws Exception {
List<JedisShardInfo> shards = Arrays.asList(
new JedisShardInfo("localhost",6379),
new JedisShardInfo("localhost",6379)); //使用相同的ip:port,仅作测试
jedis = new Jedis("localhost");
sharding = new ShardedJedis(shards);
pool = new ShardedJedisPool(new JedisPoolConfig(), shards);
}
@AfterClass
public static void tearDownAfterClass() throws Exception {
jedis.disconnect();
sharding.disconnect();
pool.destroy();
}
@Test
public void test1Normal() {
long start = System.currentTimeMillis();
for (int i = 0; i < 100000; i++) {
String result = jedis.set("n" + i, "n" + i);
}
long end = System.currentTimeMillis();
System.out.println("Simple SET: " + ((end - start)/1000.0) + " seconds");
}
@Test
public void test2Trans() {
long start = System.currentTimeMillis();
Transaction tx = jedis.multi();
for (int i = 0; i < 100000; i++) {
tx.set("t" + i, "t" + i);
}
//System.out.println(tx.get("t1000").get());
List<Object> results = tx.exec();
long end = System.currentTimeMillis();
System.out.println("Transaction SET: " + ((end - start)/1000.0) + " seconds");
}
@Test
public void test3Pipelined() {
Pipeline pipeline = jedis.pipelined();
long start = System.currentTimeMillis();
for (int i = 0; i < 100000; i++) {
pipeline.set("p" + i, "p" + i);
}
//System.out.println(pipeline.get("p1000").get());
List<Object> results = pipeline.syncAndReturnAll();
long end = System.currentTimeMillis();
System.out.println("Pipelined SET: " + ((end - start)/1000.0) + " seconds");
}
@Test
public void test4combPipelineTrans() {
long start = System.currentTimeMillis();
Pipeline pipeline = jedis.pipelined();
pipeline.multi();
for (int i = 0; i < 100000; i++) {
pipeline.set("" + i, "" + i);
}
pipeline.exec();
List<Object> results = pipeline.syncAndReturnAll();
long end = System.currentTimeMillis();
System.out.println("Pipelined transaction: " + ((end - start)/1000.0) + " seconds");
}
@Test
public void test5shardNormal() {
long start = System.currentTimeMillis();
for (int i = 0; i < 100000; i++) {
String result = sharding.set("sn" + i, "n" + i);
}
long end = System.currentTimeMillis();
System.out.println("Simple@Sharing SET: " + ((end - start)/1000.0) + " seconds");
}
@Test
public void test6shardpipelined() {
ShardedJedisPipeline pipeline = sharding.pipelined();
long start = System.currentTimeMillis();
for (int i = 0; i < 100000; i++) {
pipeline.set("sp" + i, "p" + i);
}
List<Object> results = pipeline.syncAndReturnAll();
long end = System.currentTimeMillis();
System.out.println("Pipelined@Sharing SET: " + ((end - start)/1000.0) + " seconds");
}
@Test
public void test7shardSimplePool() {
ShardedJedis one = pool.getResource();
long start = System.currentTimeMillis();
for (int i = 0; i < 100000; i++) {
String result = one.set("spn" + i, "n" + i);
}
long end = System.currentTimeMillis();
pool.returnResource(one);
System.out.println("Simple@Pool SET: " + ((end - start)/1000.0) + " seconds");
}
@Test
public void test8shardPipelinedPool() {
ShardedJedis one = pool.getResource();
ShardedJedisPipeline pipeline = one.pipelined();
long start = System.currentTimeMillis();
for (int i = 0; i < 100000; i++) {
pipeline.set("sppn" + i, "n" + i);
}
List<Object> results = pipeline.syncAndReturnAll();
long end = System.currentTimeMillis();
pool.returnResource(one);
System.out.println("Pipelined@Pool SET: " + ((end - start)/1000.0) + " seconds");
}
}
发表评论
-
Dubbo Main启动方式浅析
2015-05-27 13:54 15462关键字:Dubbo Main启动方式浅析 服务容器是一个s ... -
淘宝可伸缩高性能互联网架构--整体架构介绍
2015-05-14 13:21 12685推荐综合架构交流群:JAVA开发高级群 点击入群!!! 关键 ... -
各大巨头电商提供的IP库API接口-新浪、搜狐、阿里...
2015-04-22 13:18 15928关键字:各大巨头电商提供的IP库API接口-新浪、搜狐、阿里. ... -
用Java来获取访问者真实的IP地址-超准确
2015-04-22 12:55 6270关键字:用Java来获取访问者真实的IP地址-超准确 下面分享 ... -
Shiro集成OAuth2
2015-04-21 10:31 12484关键字:Shiro集成OAuth2 参考:http://jin ... -
淘宝网架构分享总结 - 架构,分布式,淘宝,虚拟化,水平伸缩
2015-04-19 00:25 7647推荐综合架构交流群:JAVA开发高级群 点击入群!!! 关键 ... -
高可用、开源的Redis缓存集群方案
2015-04-16 12:25 3766推荐综合架构交流群:J ... -
Zookeeper 和 SASL
2015-04-16 09:29 13659关键字:Zookeeper 和 SASL 介绍 这是一个描述Z ... -
各种Nosql数据库系统对比及应用场景分析
2015-04-15 16:29 765关键字:各种Nosql数据库系统对比及应用场景分析 导读:Kr ... -
Curator-Framework开源Zookeeper快速开发框架介绍
2015-04-14 18:41 714关键字:Curator-Framework开源Zookeepe ... -
IM消息推送之Openfire
2015-04-13 13:40 2235关键字:IM消息推送之Openfire Openfire 采用 ... -
Nio框架之Mina的demo
2015-04-12 13:38 670关键字:Nio框架之Mina的demo 官网:http://m ... -
Zookeeper中ACL(访问控制列表)
2015-04-10 17:21 2835关键字:Zookeeper中ACL( ... -
Mongodb命令大全
2015-03-18 11:18 812关键字:Mongodb命令大全 他支持的数据结构非常松散,是类 ... -
MongoDB中缩减Shard集群(删除一个Shard)--删除一个分片
2015-03-13 12:29 3654关键字:MongoDB中缩减Shard集群(删除一个Shard ... -
安装ZooKeeper(单机、伪集群、集群)
2015-01-15 11:02 10483关键字:安装ZooKeeper(单机、伪集群、集群) 推荐 ... -
Zookeeper Api(java)入门详解与应用场景
2015-01-14 14:36 1664关键字:Zookeeper Api(java)入门详解与应用场 ... -
redis中文API
2014-11-11 18:06 2309关键字:redis中文API RED ... -
特大型网站技术架构
2014-10-20 17:34 4128特大型网站技术架构 ... -
OAuth2.0的Java实现 Apache Amber
2014-10-09 23:20 818关键字:OAuth2.0的Java实现 Apache Ambe ...
相关推荐
Jedis是Redis的Java客户端,它提供了一个丰富的API来操作Redis数据存储系统。Redis是一个高性能的键值数据库,常用于缓存、消息中间件以及数据结构服务器等场景。Jedis作为Java开发者与Redis交互的主要工具,使得在...
Redis与Java客户端的交互是通过Java Redis客户端库实现的,如Jedis和Lettuce。Jedis是较早且被广泛使用的Redis客户端,它支持所有Redis命令,适用于简单易用的API接口。Lettuce则是一个更现代的客户端,它提供了基于...
Java基于Redis实现分布式锁代码实例 分布式锁的必要性 在多线程环境中,资源竞争是一个常见的问题。例如,在一个简单的用户操作中,一个线程修改用户状态,首先在内存中读取用户状态,然后在内存中进行修改,然后...
在Java中,我们通常使用Jedis或Lettuce作为Redis的客户端库。这里,我们假设`RedisClientTemplate`是基于Jedis实现的,因为Jedis是更常见的选择,尤其是在早期项目中。当然,如果使用的是Lettuce,其API设计会有所...
Jedis是Redis的Java客户端,它提供了丰富的API来与Redis服务器进行交互。本文将深入探讨Jedis在Pipeline、分布式ID生成器以及分布式锁(包括watch和multi命令)方面的应用,以帮助理解其在分布式环境中的高效操作。 ...
Jedis是Redis官方推荐的Java客户端,提供了丰富的API来操作Redis。 1. **引入依赖**:在项目中,需要添加`jedis-2.1.0.jar`作为依赖。对于Maven项目,可以在pom.xml文件中添加如下依赖: ```xml <groupId>redis...
通过学习和使用Jedis,开发者能够轻松地将Java应用程序与Redis集成,利用Redis的强大功能进行数据存储、缓存管理和分布式计算。结合Jedis提供的丰富API,开发者可以实现高效、可靠的Redis操作。
Jedis是Java语言中操作Redis的客户端库,它提供了丰富的API来与Redis服务器进行交互,实现了包括字符串、哈希、列表、集合、有序集合等多种数据类型的操作。 在Java项目中集成Redis,首先你需要在项目的类路径下...
总结来说,Java调用Redis涉及到的关键知识点包括:Jedis客户端的使用,连接和验证,基本的键值操作(如set和get),以及在实际项目中如何扩展到其他数据结构和集群环境。通过这个简单的Demo,开发者可以快速了解和...
Jedis是Java语言中广泛使用的Redis客户端库,它提供了丰富的API来操作Redis服务器,包括数据的读写、事务处理、发布订阅等功能。这篇“征服Redis + Jedis”的博文很可能是介绍如何在Java应用中高效地使用Redis和...
自旋式加锁是一种常见的分布式锁实现方式。在Java中,我们可以创建一个`LockService`类,其中包含一个循环尝试获取锁的方法。当尝试获取锁失败时(即`SETNX`返回`false`),线程会进入循环等待一段时间后再次尝试,...
Jedis是Java语言中广泛使用的Redis客户端库,提供了丰富的API以便于与Redis服务器进行交互。在本测试环境中,我们将探讨如何利用Jedis进行Redis的基本操作,包括增删等。 首先,我们需要在本地或服务器上安装Redis...
Java客户端库如JedisCluster或Lettuce提供了连接和操作Redis集群的API。 批量插入String类型数据时,通常使用`JedisCluster`类中的`mset`方法。这个方法允许一次性设置多个键值对,但需要注意的是,由于Redis集群的...
标题中的“jedis-2.9.0.jar”是指Jedis的一个特定版本,它是Java语言中用于连接和操作Redis数据库的客户端库。Jedis是开源的,由Pascal Lesier开发,它提供了丰富的API,使得Java开发者能够方便地在应用程序中集成...
Jedis是Java社区广泛使用的Redis客户端,提供了丰富的API接口供开发者调用。在项目中,可以通过Maven或Gradle添加依赖: ```xml <!-- Maven --> <groupId>redis.clients <artifactId>jedis <version>3.7.0 //...
首先,我们需要引入Jedis库,这是一个Java客户端,用于与Redis服务器进行交互。确保在项目中已经添加了Jedis的依赖,如Maven项目可以在pom.xml中添加以下依赖: ```xml <groupId>redis.clients <artifactId>...
【基于Redis实现分布式应用限流的方法】 限流是保护系统免受高并发访问或恶意攻击的重要手段,通过限制系统的处理速度或在特定时间窗口内处理的请求数量,防止系统资源耗尽导致服务崩溃。Redis,作为一款高效且广泛...
然后,通过JFinal提供的拦截器或者Service等方式,就可以在业务代码中方便地调用Redis的操作,如设置、获取、删除键值,以及执行事务等。同时,由于采用了连接池,即使在高并发场景下,也能保证连接资源的有效利用,...
**Jedis源码详解——深度探索Redis Java客户端** 在Java开发中,Jedis是与Redis进行交互的常用客户端库,它提供了丰富的API用于操作Redis的数据结构。本文将深入解析Jedis的源码,帮助开发者更好地理解和使用这个...