了解了一些决策树的构建算法后,现在学习下随机森林。还是先上一些基本概念:
随机森林是一种比较新的机器学习模型。顾名思义,是用随机的方式建立一个森林,森林里面有很多的决策树组成,随机森林的每一棵决策树之间是没有关联的。在得到森林之后,当有一个新的输入样本进入的时候,就让森林中的每一棵决策树分别进行一下判断,看看这个样本应该属于哪一类(对于分类算法),然后看看哪一类被选择最多,就预测这个样本为那一类,即选举投票。
优点:
a. 在数据集上表现良好,两个随机性的引入,使得随机森林不容易陷入过拟合
b. 在当前的很多数据集上,相对其他算法有着很大的优势,两个随机性的引入,使得随机森林具有很好的抗噪声能力
c. 它能够处理很高维度(feature很多)的数据,并且不用做特征选择,对数据集的适应能力强:既能处理离散型数据,也能处理连续型数据,数据集无需规范化
d. 可生成一个Proximities=(pij)矩阵,用于度量样本之间的相似性: pij=aij/N, aij表示样本i和j出现在随机森林中同一个叶子结点的次数,N随机森林中树的颗数
e. 在创建随机森林的时候,对generlization error使用的是无偏估计
f. 训练速度快,可以得到变量重要性排序(两种:基于OOB误分率的增加量和基于分裂时的GINI下降量
g. 在训练过程中,能够检测到feature间的互相影响
h. 容易做成并行化方法
i. 实现比较简单
说白了,随机森林就是由许多个决策树构成,决策树使用什么算法取决于你。每个决策树构建需要的数据集是总数据集的随机抽取。同时每个抽取出来的数据集也不一定是包含所有特征属性,其含有的特征属性也是随机从总特征属性中随机抽取。随机森林等到所有决策树构建完成后,对样本数据集进行测试分类。最终的结果可以通过简单的投票选择获得,也可以通过复杂的权重计算获得等等。
下面是随机森林Java的简单实现
public class ForestBuilder extends BuilderAbstractImpl { /** 决策树数量*/ private int treeNum = 0; /** 随机属性数量*/ private int attributeNum = 0; /** 构建决策树Builder*/ private Builder builder = null; public ForestBuilder(int treeNum, Builder builder, int attributeNum) { this.treeNum = treeNum; this.builder = builder; this.attributeNum = attributeNum; } @Override public Object build(Data data) { ExecutorService pools = Executors.newFixedThreadPool( Runtime.getRuntime().availableProcessors()); List<Future<TreeNode>> futures = new ArrayList<Future<TreeNode>>(); for (int i = 0; i < treeNum; i++) { //线程里面去构建决策树 DecisionCallable callable = new DecisionCallable(data, builder, attributeNum); futures.add(pools.submit(callable)); } System.out.println("futures size: " + futures.size()); //等待线程创建完决策树 List<TreeNode> results = new ArrayList<TreeNode>(); handleFuture(futures, results); int futureLen = futures.size(); int resultsLen = results.size(); while (resultsLen < futureLen) { handleFuture(futures, results); resultsLen = results.size(); } pools.shutdown(); return results; } private void handleFuture(List<Future<TreeNode>> futures, List<TreeNode> results) { Iterator<Future<TreeNode>> iterator = futures.iterator(); while (iterator.hasNext()) { Future<TreeNode> future = iterator.next(); if (future.isDone()) { try { results.add(future.get()); iterator.remove(); } catch (Exception e) { e.printStackTrace(); } } } } } class DecisionCallable implements Callable<TreeNode> { private Data data = null; private int attributeNum = 0; private Builder builder = null; public DecisionCallable(Data data, Builder builder, int attributeNum) { this.data = data; this.builder = builder; this.attributeNum = attributeNum; } @Override public TreeNode call() throws Exception { Data randomData = DataLoader.loadRandom(data, attributeNum); Object object = builder.build(randomData); return null != object ? (TreeNode) object : null; } }
public class ForestNode extends Node { private static final long serialVersionUID = 1L; private List<TreeNode> treeNodes = null; public ForestNode(List<TreeNode> treeNodes) { this.treeNodes = treeNodes; } @Override public Object classify(Data data) { List<Object[]> results = new ArrayList<Object[]>(); for (TreeNode treeNode : treeNodes) { Object result = treeNode.classify(data); if (null != result) { results.add((Object[]) treeNode.classify(data)); } } return DataHandler.vote(results); } @Override public Object classify(Instance... instances) { List<Object[]> results = new ArrayList<Object[]>(); for (TreeNode treeNode : treeNodes) { Object result = treeNode.classify(instances); if (null != result) { results.add((Object[]) treeNode.classify(instances)); } } //投票选择 return DataHandler.vote(results); } }
相关推荐
高效决策树算法是数据挖掘和机器学习领域中的一个重要工具,尤其在分类问题中表现出色。这一系列笔记将深入探讨如何构建高效、准确的决策树模型。决策树是一种以树状结构进行决策的模型,其中每个内部节点代表一个...
在数据挖掘领域,决策树算法是一种常用的分类方法,它通过一系列规则对数据进行分类或回归。C4.5决策树是决策树算法的一种改进形式,由Ross Quinlan开发,它继承了ID3决策树处理离散型属性的能力,并且还能够处理...
在数据挖掘中,常用的分类方法有KNN、决策树、朴素贝叶斯分类等。 KNN算法是指K-Nearest Neighbors算法,该算法通过计算测试样本与训练样本之间的距离来预测测试样本的类别。 决策树算法是指使用决策树来分类数据...
5. 数据挖掘技术:常见的数据挖掘技术包括决策树、贝叶斯网络、支持向量机、聚类算法如K-means和DBSCAN,以及关联规则算法如Apriori。这些技术各有优缺点,适用于不同的数据特性和问题场景。 6. 数据挖掘的应用领域...
分类算法如决策树(C4.5, ID3)、随机森林和神经网络,它们能根据已有数据构建模型,预测未知数据的类别。聚类算法如K-means、层次聚类和DBSCAN,则是无监督学习方法,用于发现数据的自然分组。关联规则学习,如...
决策树是一种常用的数据挖掘方法,尤其在机器学习领域中占据着重要的地位。它通过一系列基于数据属性的判断规则,将数据集分割成不同的类别或数值预测。Spark 是一个开源的大数据处理框架,它提供了MLlib库,其中...
在浙江大学的数据挖掘课程中,可能会涵盖这些基本概念,同时深入到更具体的算法和技术,如SVM(支持向量机)、决策树、神经网络、Apriori算法、K-means聚类等。此外,还可能涉及数据库管理系统、统计学基础、机器...
### Python版数据挖掘实验4报告:用决策树预测获胜球队 #### 实验名称与目的 本次实验名为“用决策树预测获胜球队”。其主要目的是利用机器学习中的决策树算法来预测篮球比赛中哪支球队可能获胜。这不仅是一次理论...
分类和预测任务中,支持向量机(SVM)、决策树、贝叶斯网络和神经网络是常用的模型。SVM通过构造最大分类间隔的超平面实现分类,对于非线性问题,它引入了核函数进行映射。贝叶斯网络则利用概率和条件概率来表示变量间...
《机器学习与数据挖掘学习笔记》是一份综合性的学习资料,涵盖了这两个领域的重要概念、算法和技术。这份笔记的目的是为了帮助读者深入理解机器学习和数据挖掘的基础知识,并提供实际操作的指导。 首先,我们来探讨...
数据挖掘十大算法详解,数据挖掘学习笔记--决策树C4.5 、数据挖掘十大算法--K-均值聚类算法 、机器学习与数据挖掘-支持向量机(SVM)、拉格朗日对偶、支持向量机(SVM)(三)-- 最优间隔分类器 (optimal margin ...
这些算法在数据挖掘和预测模型构建中占有重要地位。 首先,朴素贝叶斯算法是一种基于贝叶斯定理的分类方法。在实际应用中,如文本分类,需要对特征向量进行归一化处理。计算公式涉及到条件概率的乘积,其中条件概率...
3. 学习和实践各种数据挖掘算法,如决策树、随机森林、支持向量机和神经网络等。 4. 了解如何在大数据环境中实现模型的训练和验证。 5. 提升问题解决能力,通过比赛代码学习如何解决实际问题并优化模型性能。 这个...
分类算法如决策树、随机森林和支持向量机,用于将数据分成不同的类别。聚类方法如K-means和层次聚类则用于无监督学习,帮助发现数据的自然分组。关联规则学习如Apriori算法常用于市场篮子分析,找出商品之间的购买...
数据仓库笔记的知识点涵盖了数据仓库和数据挖掘的基本概念、数据挖掘的主要任务与方法、学习算法以及搭建数据仓库的相关知识。下面将详细阐述这些知识点。 首先,数据仓库是为了企业决策支持而设计的系统,它主要...
"数据挖掘笔记"这部分内容可能是学习者对所学知识的整理,包括关键概念的总结、公式解析、算法实现步骤等,对于初学者来说,这是一份极具价值的参考资料,能帮助他们更好地理解和记忆复杂的知识点。 "习题"则提供了...
数据挖掘中的分类技术 数据挖掘是一种常用的数据分析技术,旨在从大量数据中提取有价值的信息。数据挖掘技术可以分为多种类型,包括分类、预测、聚类、关联规则等。其中,分类是数据挖掘中的一种重要技术,旨在对...
《数据挖掘》读书笔记主要涵盖了数据可视化、建模方法、数据挖掘技术和预测分析的应用。作者Philipp K. Janer凭借其在物理学和软件工程领域的深厚背景,为读者提供了丰富的数据分析和数学建模知识。 在全书中,作者...
在本项目中,我们主要探讨的是如何在JupyterLab环境下使用Python进行数据挖掘,并通过决策树模型对数据进行分析。JupyterLab是一个交互式的开发环境,适合数据分析、机器学习等任务,而决策树是一种常见的监督学习...
决策树是一种广泛应用于机器学习和数据挖掘中的分类和回归模型,它的主要特点是通过构建树状结构来模拟一系列的决定过程。在本章的学习笔记中,我们聚焦于决策树的生成流程、属性划分的选择以及剪枝处理,同时也涉及...