Region的架构
HRegionServer:
配置:
hbase.client.retries.number (默认10) 客户端的重试次数
hbase.regionserver.msginterval (默认3*1000) ???
hbase.regionserver.checksum.verify(默认false) 是否启用checksum
hbase.server.thread.wakefrequency(默认10*1000) 线程检查频率
hbase.regionserver.numregionstoreport(默认10) ???
hbase.regionserver.handler.count(默认10) handler处理线程个数
hbase.regionserver.metahandler.count(默认10) 处理meta和root的线程个数
hbase.rpc.verbose(默认false)
hbase.regionserver.nbreservationblocks(默认4)
hbase.regionserver.compactionChecker.majorCompactPriority(默认Integer.MAX_VALUE)
HRegionServer的主要操作:
包含的类有
HRegion集合
Leases(租借时间检查)
HMasterRegionInterface(管理hbase)
HServerLoad(hbase负载)
CompactSplitThread(用于合并处理)
MemStoreFlusher(用于刷新memstore)
HLog(WAL相关)
LogRoller(日志回滚)
ZooKeeperWatcher(zk监听)
SplitLogWorker(用于切分日志)
ExecutorService(用户启动open,close HRegion的线程池)
ReplicationSourceService和ReplicationSinkService(replication相关)
HealthCheckChore(健康检查)
一些监听类
MasterAddressTracker
CatalogTracker
ClusterStatusTracker
一些函数
postOpenDeployTasks() 此函数用于更新root表或meta表
各种CURD,scanner,increment操作
multi操作(对于delete和put)
对HRegion的flush,close,open(提交到线程池去做)
split,compact操作,这些最终由一个具体的HRegion去完成
启动的线程
hbase.regionserver.executor.openregion.threads 3
hbase.regionserver.executor.openroot.threads 1
hbase.regionserver.executor.openmeta.threads 1
hbase.regionserver.executor.closeregion.threads 3
hbase.regionserver.executor.closeroot.threads 1
hbase.regionserver.executor.closemeta.threads 1
hlog roller
cache flusher
compact
health check
lease
WEB UI
replication
rpc server
split worker
HRegion
配置:
HRegion的主要操作:
1.CURD和increment操作
2.doMiniBatchMutation操作(用于delete和put)
3.对region的open,delete,init,close,以及addRegionToMeta等操作
4.snapshot
5.bulkload
6.split
7.compact(major,minor)
8.lock
包含的内部类
WriteState(在flush,close,compact时会根据这个类加锁)
RegionScannerImpl(scan的region级别操作)
coprocessor的处理原理
//HRegion的构造函数 coprocessorHost = new RegionCoprocessorHost(this, rsServices, conf); //RegionCoprocessorHost类中 将自定义的coprocessor类加载进来,并放到集合中 protected SortedSet<E> coprocessors = new SortedCopyOnWriteSet<E>(new EnvironmentPriorityComparator()); public RegionCoprocessorHost类中() { // load system default cp's from configuration. loadSystemCoprocessors(conf,"hbase.coprocessor.region.classes"); // load system default cp's for user tables from configuration. if (!HTableDescriptor.isMetaTable(region.getRegionInfo().getTableName())) { loadSystemCoprocessors(conf,"hbase.coprocessor.user.region.classes"); } // load Coprocessor From HDFS loadTableCoprocessors(conf); } public void load相关函数() { //1.从当前线程上下文classloader中找到类并加载 //2.放到coporcessors集合中 } //coprocessor的执行过程 //coprocessorHost.preFlush()时候会遍历执行所有集合中的处理器 HRegion#flush() { //1.coprocessorHost.preFlush(); //2.flush //3.coprocessorHost.postFlush(); }
服务端接收处理过程
HBaseServer$Listener的run()函数和doAccept()函数简化如下 这是一个独立的listene线程
while (running) { SelectionKey key = null; selector.select(); // FindBugs IS2_INCONSISTENT_SYNC Iterator<SelectionKey> iter = selector.selectedKeys().iterator(); while (iter.hasNext()) { key = iter.next(); iter.remove(); if (key.isValid()) { if (key.isAcceptable()) doAccept(key); } } } } void doAccept(SelectionKey key) { ServerSocketChannel server = (ServerSocketChannel) key.channel(); currentReader = (currentReader + 1) % readers.length; Reader reader = readers[currentReader]; readSelector.wakeup(); SelectionKey readKey = reader.registerChannel(channel); c = getConnection(channel, System.currentTimeMillis()); readKey.attach(c); }
HBaseServer$Listener$Reader的run()函数简化如下 这是一个独立的select线程
while (running) { SelectionKey key = null; readSelector.select(); while (adding) { this.wait(1000); } Iterator<SelectionKey> iter = readSelector.selectedKeys().iterator(); while (iter.hasNext()) { key = iter.next(); iter.remove(); if (key.isValid()) { if (key.isReadable()) { doRead(key); } } } } //doRead()主要是读取远端的数据并解析处理 //没有这个process()函数,只是将逻辑简化了一下展示而言 //解析id,param并封装成一个Call对象,插入到并发队列中,之后由Handler线程处理 void process() { int id = dis.readInt(); param = ReflectionUtils.newInstance(paramClass, conf);//read param param.readFields(dis); Call call = new Call(id, param, this, responder, callSize); if (priorityCallQueue != null && getQosLevel(param) > highPriorityLevel) { priorityCallQueue.put(call); } else if (replicationQueue != null && getQosLevel(param) == HConstants.REPLICATION_QOS) { replicationQueue.put(call); } else { callQueue.put(call); // queue the call; maybe blocked here } }
HBaserServer$Handler的run()函数简化如下
public void run() { //这里的myCallQueue和callQueue是一个队列 Call call = myCallQueue.take(); Invocation call = (Invocation)param; Method method = protocol.getMethod(call.getMethodName(), call.getParameterClasses()); Object[] params = call.getParameters(); Object value = method.invoke(impl, params); //最后会调用到HBaserServer自身的某个函数 //onlineRegions 是ConcurrentHashMap<String, HRegion>() String name = HRegionInfo.encodeRegionName(regionName) onlineRegions.get(name); Result r = region.getClosestRowBefore(row, family); return r; }
flush的过程
服务端是收到了客户端发来的flushRegion请求,具体过程参见 客户端请求过程一文
客户端如果是flush全表,先是获取这个表的所有region名字,然后做一次批量的flushRegion请求(多个请求),但是所有的请求都是在一个线程中执行的
和flush相关的类函数简化如下,1-4是调用顺序
1.HRegion#flushcache()
2.HRegion#internalFlushcache()
3.Store#internalFlushCache()
4.StoreFile$Writer#append()
//刷新region中的数据,注意有一个读锁 HRegion#flushcache() { try { lock.readLock().lock(); internalFlushcache(status); } finally { lock.readLock().unlock(); } } //这里是遍历获取region中的所有store,然后对每个store都创建一个 //StoreFlusher对象,使用这个对象来刷新数据 //注意在获取所有Store的时候使用了写锁 HRegion#internalFlushcache() { try { this.updatesLock.writeLock().lock(); List<StoreFlusher> storeFlushers = new ArrayList<StoreFlusher>(stores.size()); for (Store s : stores.values()) { storeFlushers.add(s.getStoreFlusher(completeSequenceId)); } } finally { this.updatesLock.writeLock().unlock(); } for (StoreFlusher flusher : storeFlushers) { flusher.flushCache(status); } } //将memstore中的数据取出然后遍历所有的KV //将其刷新到HFile中,注意刷新的时候有一个flush锁 Store#internalFlushCache() { InternalScanner scanner = null; KeyValueScanner memstoreScanner = new CollectionBackedScanner(set, this.comparator); Scan scan = new Scan(); scan.setMaxVersions(scanInfo.getMaxVersions()); scanner = new StoreScanner(this, scanInfo, scan, Collections.singletonList(memstoreScanner), ScanType.MINOR_COMPACT, this.region.getSmallestReadPoint(), HConstants.OLDEST_TIMESTAMP); try { flushLock.lock(); StoreFile.Writer writer = createWriterInTmp(set.size()); List<KeyValue> kvs = new ArrayList<KeyValue>(); boolean hasMore; do { hasMore = scanner.next(kvs, compactionKVMax); for (KeyValue kv : kvs) { Writer.append(kv); flushed += this.memstore.heapSizeChange(kv, true); } kvs.clear(); }while(hasMore); } finally { flushLock.unlock(); } } //如果配置了布隆过滤器这里也会创建,最后调用 //HFileWriterV2将数据写入 StoreFile$Writer#append(final KeyValue kv) { appendGeneralBloomfilter(kv); appendDeleteFamilyBloomFilter(kv); HFileWriterV2#append(kv); trackTimestamps(kv); }
单个多个put和多个delete的过程
最终是将KeyValue存到KeyValueSkipListSet中,这个类内部是采用ConcurrentSkipListMap实现的
服务端是接收到客户端发来的multi请求
注意只有put操作(单个put和批量put操作)以及批量的delete操作才会执行上面的调用逻辑
incr和单个delete采用了不同的处理逻辑
简化的核心处理函数如下:
//对put和delete操作,都会进到这个函数里面 HRegion#doMiniBatchMutation() { //1.试着获取锁 //2.更新时间戳 lock(this.updatesLock.readLock(), numReadyToWrite); //3.写入到memstore中 long addedSize = 0; for (int i = firstIndex; i < lastIndexExclusive; i++) { addedSize += applyFamilyMapToMemstore(familyMaps[i], w); } //4.写入到WALEdit中 addFamilyMapToWALEdit(familyMaps[i], walEdit); //5.写入到HLog中(不做sync) HLog.appendNoSync(regionInfo, this.htableDescriptor.getName(), walEdit, first.getClusterId(), now, this.htableDescriptor); //6.释放锁 this.updatesLock.readLock().unlock(); //7.同步WALEdit //8.mvcc相关 mvcc.completeMemstoreInsert(w); //9.执行coprocessor hook }
这里没有memstore满了判断逻辑,而是由单独的一个线程(cacheFlusher)出处理的
写入到memstore的判断逻辑图
incr的过程
核心处理逻辑如下
HRegion#increment() { Map<Store, List<KeyValue>> tempMemstore = new HashMap<Store, List<KeyValue>>(); try { Integer lid = getLock(lockid, row, true); lock(this.updatesLock.readLock()); byte [] row = increment.getRow(); Get get = new Get(row); List<KeyValue> results = get(get, false); for(KeyValue kv : results) { KeyValue kv = results.get(); if(kv.getValueLength() == Bytes.SIZEOF_LONG) { amount += Bytes.toLong(kv.getBuffer(), kv.getValueOffset(), Bytes.SIZEOF_LONG); } else { throw new DoNotRetryIOException("Attempted to increment field that isn't 64 bits wide"); } } if (writeToWAL) { walEdits.add(newKV); } tempMemstore.put(store, kvs); //将WALEdit sync到HLog中 size = this.addAndGetGlobalMemstoreSize(size); flush = isFlushSize(size); if (flush) { requestFlush(); } } finally { this.updatesLock.readLock().unlock(); releaseRowLock(lid); } }
可以看到incrment的执行流程是先根据row创建Get对象,然后获取这个值,再对这个值做++操作
并将结果放到临时缓存中,如果缓存已满就做刷新
从获取数据到,再做++操作,最后写入缓存(可能还要做刷新处理)这么一段过程都是需要加锁处理的,加锁只是一个行锁
单个delete的过程
主要处理简化逻辑如下
HRegion#delete(){ try { lid = getLock(lockid, row, true); internalDelete() } finally { releaseRowLock(lid); } } HRegion#internalDelete() { try { updatesLock.readLock().lock(); //将KeyValue写入到WALEdit中 for(family : 获取delete关联的所有famliy) { Store store = getStore(family); for (KeyValue kv: edits) { kv.setMemstoreTS(localizedWriteEntry.getWriteNumber()); addedSize += store.add(kv); } } flush = isFlushSize(this.addAndGetGlobalMemstoreSize(addedSize)); if (flush) { requestFlush(); } } finally { updatesLock.readLock().unlock(); } }
delete是将所有的column famliy都遍历一遍然后删除和这个key相关的所有famliy,并写入缓存中,如果缓存满了就做刷新处理,同时在删除的时候会有更新锁。
get的过程
下面是核心处理逻辑,可以看到get最后是通过scan来处理的,也就是简单的将scan包装了一下
HRegion#get() { List<KeyValue> results = new ArrayList<KeyValue>(); Scan scan = new Scan(get); RegionScanner scanner = getScanner(scan); List<KeyValue> list = scanner.next(results, SchemaMetrics.METRIC_GETSIZE); return Result(list); }
scan过程
scan是最复杂的操作,其中包含了getClosestRowBefore,openScanner,next三个操作
第一个是对用于对META和ROOT表操作的,第二个用于创建一个scan对象,第三个用于做遍历操作
首先看第一个closestRowBefore的时序图
这里简单来说有这么几步操作
1.通过Store调用HFileReaderV2,这里主要用于打开一个HFile文件,然后定位到指定的key前面或者后面。
这步操作是用于在ROOT表中获取特定的KeyValue,info:server这个KeyValue,然后将这个值封装成
Get对象再去查询META表
2.调用get函数对数据进行获取,get内部又是调用scan函数的,所以实际会创建一个StroeScanner对象
3.StoreScanner也就是对底层的HFileScanner的简单封装
4.之后调用next()获取一段数据,这里还会有嵌入了filter的执行逻辑
5.最后返回给用户的是Result结果,这里就是META表中的一条记录
getClosestRowBefore的调用栈如下
scan操作的类图如下
Store是核心的类,这个类中包含了若干个StoreFile,每个StoreFile类中又有一个Reader和Writer内部类。
通过Reader内部类可以返回一个StroeFileScanner对象
而最终上层在做scan的时候,是通过RegionScannerImpl去做的,这里就包含了filter的过滤逻辑。
执行逻辑如下
//定位到一个具体的Store后,然后在这个Sotre中查找最接近指定key的KeyValue //再根据这个KeyValue做一次get查询 //简单来说就是根据特定的key直接从HFile中查找最接近的KeyValue //然后封装成Get操作,从META表中查询出List<KeyValue>并返回 HRegion#getClosestRowBefore() { startRegionOperation(); Store store = getStore(family); KeyValue key = store.getRowKeyAtOrBefore(row); if (key != null) { Get get = new Get(key.getRow()); get.addFamily(family); result = get(get, null); } } //先从memstore中查找最匹配的key,然后再遍历当前Store下的所有的HFile //找到最匹配的那个key //比如客户端发起查询.META.,test,,99999999999999,99999999999999 //实际找到key为(返回info:server那个KeyValue) //.META.,,1/info:server/1423222815731/Put/vlen=23/ts=0 Store#getRowKeyAtOrBefore() { this.memstore.getRowKeyAtOrBefore(state); for (StoreFile sf : Lists.reverse(storefiles)) { rowAtOrBeforeFromStoreFile(sf, state); } } //这里是定位到-ROOT-表中的info:server 这一个KeyValue并返回 Store#rowAtOrBeforeFromStoreFile() { HFileScanner scanner = r.getScanner(true, true, false); if (!seekToScanner(scanner, firstOnRow, firstKV)) return; if (walkForwardInSingleRow(scanner, firstOnRow, state)) return; while (scanner.seekBefore(firstOnRow.getBuffer(), firstOnRow.getKeyOffset(),firstOnRow.getKeyLength())) { KeyValue kv = scanner.getKeyValue(); if (!state.isTargetTable(kv)) break; if (!state.isBetterCandidate(kv)) break; // Make new first on row. firstOnRow = new KeyValue(kv.getRow(), HConstants.LATEST_TIMESTAMP); // Seek scanner. If can't seek it, break. if (!seekToScanner(scanner, firstOnRow, firstKV)) break; // If we find something, break; if (walkForwardInSingleRow(scanner, firstOnRow, state)) break; } } //先是在缓存中查找,如果找到就返回 //否则就在HFile中查找,找到后再放到缓存中 //这里读取的是一个data block HFileReaderV2#readBlock() { BlockCacheKey cacheKey = new BlockCacheKey(name, dataBlockOffset, dataBlockEncoder.getEffectiveEncodingInCache(isCompaction), expectedBlockType); HFileBlock cachedBlock = (HFileBlock)cacheConf.getBlockCache(). getBlock(cacheKey, cacheBlock, useLock); if (cachedBlock != null) { return cachedBlock; } HFileBlock hfileBlock = fsBlockReader.readBlockData(dataBlockOffset,onDiskBlockSize, -1, pread); cacheConf.getBlockCache().cacheBlock(cacheKey, hfileBlock,cacheConf.isInMemory()); } //执行到这里的时候已经获取到key在META表中的接近key了 //然后在执行get操作根据META表的key再从META表中获取一条数据返回 //nextRaw最后会调用nextInternal做处理 HRegion$RegionScannerImpl#nextRaw() { if (outResults.isEmpty()) { // Usually outResults is empty. This is true when next is called // to handle scan or get operation. returnResult = nextInternal(outResults, limit, metric); } else { List<KeyValue> tmpList = new ArrayList<KeyValue>(); returnResult = nextInternal(tmpList, limit, metric); outResults.addAll(tmpList); } } //这个函数通过KeyValueHeap获取一条KeyValue //KeyValueHeap是调用StoreScanner#next() //而StoreScanner最终会调用HFileReaderv2$ScannerV2#next() //获取一条KeyValue,最后返回一个List<KeyValue>,也就是Result //返回结果为 //[.META.,,1/info:regioninfo/1423222781931/Put/vlen=34/ts=0, //.META.,,1/info:server/1423222815731/Put/vlen=23/ts=0, //.META.,,1/info:serverstartcode/1423222815731/Put/vlen=8/ts=0, //.META.,,1/info:v/1423222781931/Put/vlen=2/ts=0] HRegion$RegionScannerImpl#nextInternal() { // Let's see what we have in the storeHeap. KeyValue current = this.storeHeap.peek(); //之后再做一些filter操作,判断是否需要终止后续逻辑 }
openscanner的执行过程
执行逻辑如下
//这里的逻辑是创建一个RegionScanner对象,这个对象内部是封装了RegionScannerImpl //最终是调用HFileReaderV2定位到一个具体的data block附近,然后将这个scann对象缓存起来 //并创建一个scannID,将id和scan对象放到map中,并将scannID返回给用户 //之后用户就根据这个scanID去做scan操作 HRegionServer#openScanner() { HRegion r = getRegion(regionName); RegionScanner s = r.getScanner(scan); return addScanner(s); } //创建RegionScannerImpl待以后使用 HRegion#instantiateRegionScanner() { //返回类型为RegionScanner return new RegionScannerImpl(scan, additionalScanners, this); } //RegionScannerImpl的构造函数 //此时会创建一个StoreScanner对象 //并调用StoreFileScanner#seek() RegionScannerImpl#init() { for (Map.Entry<byte[], NavigableSet<byte[]>> entry :scan.getFamilyMap().entrySet()) { Store store = stores.get(entry.getKey()); //这里会创建一个StoreScanner对象 KeyValueScanner scanner = store.getScanner(scan, entry.getValue()); scanners.add(scanner); } } StoreFileScanner#seek() { //1.定位到指定的key附近 seekAtOrAfter() } //生成一个scannID,放到map中(map的key是scannID,value是RegionScannerImpl) //最后再创建一个租借时间的监听器 HRegionServer#addScanner() { scannerId = rand.nextLong(); String scannerName = String.valueOf(scannerId); scanners.put(scannerName, s); this.leases.createLease(scannerName, new ScannerListener(scannerName)); }
next的执行过程
执行逻辑如下
//首先根据scannID获取scan对象 //然后使用这个scan对象获取数据 //最后返回Result[] 数组给客户端 HRegionServer#next() { RegionScanner s = this.scanners.get(scannID); this.leases.cancelLease(scannID); HRegion region = getRegion(s.getRegionInfo().getRegionName()); List<Result> results = new ArrayList<Result>(nbRows); boolean moreRows = s.nextRaw(values, SchemaMetrics.METRIC_NEXTSIZE); results.add(new Result(values)); this.leases.addLease(lease); //最终返回Result[] 数组 } //使用RegionScannerImpl这个内部类来抓取数据 HRegion$RegionScannerImpl#nextRaw() { if (outResults.isEmpty()) { // Usually outResults is empty. This is true when next is called // to handle scan or get operation. returnResult = nextInternal(outResults, limit, metric); } else { List<KeyValue> tmpList = new ArrayList<KeyValue>(); returnResult = nextInternal(tmpList, limit, metric); outResults.addAll(tmpList); } } //populateResult函数中调用KeyValueHeap#next()获取一条KeyValue HRegion$RegionScannerImpl#nextInternal() { boolean stopRow = isStopRow(currentRow, offset, length); KeyValue nextKv = populateResult(results, this.storeHeap, limit, currentRow, offset, length, metric); //一系列的filter,过滤一些东西,看是否需要结束 } //批量抓取一些KeyValue KeyValueHeap#next() { InternalScanner currentAsInternal = (InternalScanner)this.current; boolean mayContainMoreRows = currentAsInternal.next(result, limit, metric); KeyValue pee = this.current.peek(); } //这里有很复杂的switch判断,主要给filter使用的 //根据不同的情况可能会出现重现定位reseek() StoreScanner#next() { switch(code) { case SEEK_NEXT_ROW: { reseek(matcher.getKeyForNextRow(kv)); break; } case SEEK_NEXT_COL: { reseek(matcher.getKeyForNextColumn(kv)); break; } case SKIP: { KeyValueHeap.next(); } //...... } } //调用HFileReaderV2定位具体的data block StoreFileScanner#reseek() { if (!reseekAtOrAfter(hfs, key)) { close(); return false; } cur = HFileReaderV2$ScannerV2.getKeyValue(); }
相关推荐
3. **RPC机制**:HBase使用远程过程调用(RPC)与RegionServer进行通信,处理数据请求。这个JAR包包含了相关的RPC实现。 4. **行键(RowKey)索引**:HBase是一种列族式数据库,行键是其主要的索引方式。`hbase-...
【标题】"phillycrime-springboot-phoenix"是一个项目,它将Apache Phoenix、Apache HBase与SpringBoot框架集成,用于处理和分析费城(Philly)的犯罪数据。这个项目旨在提供一个高效的数据查询和分析平台,利用了...
另外,HBase还需要处理在数据传输过程中可能出现的异常情况,比如网络中断、服务端故障等。HBase的RPC框架需要有一套完整的出错处理和重试机制,保证通信的健壮性。 HBase为了实现以上提到的RPC通信机制,提供了...
用户首先向KDC请求TGT,然后使用TGT请求服务票证(Service Ticket),这个服务票证允许用户访问特定的服务。整个过程都是加密的,保证了安全性。 2. **系统准备**: 在搭建Kerberos环境前,你需要一个运行Linux的...
5. `HBaseProtos.CoprocessorServiceRequest`和`HBaseProtos.CoprocessorServiceResponse`:用于在客户端和服务端之间传递服务请求和响应。 6. `HTableInterface`和`RegionServerServices`接口:Coprocessor可以...
针对HBase的服务端性能调优,可以通过合理调整一系列关键参数来提升系统的稳定性和效率。下面将详细介绍几个核心参数及其调优方法。 ##### 1. `hbase.regionserver.handler.count` - **含义**:该参数决定了...
- 监控指标涵盖连接数、响应时间、处理时间、读写请求数、请求大小、运行线程数、flush和compaction队列长度、Blockcache命中率、Hlog文件大小和数量、Storefile数量和大小等。 - 通过模拟用户行为检测异常,比如...
此外,书中还会介绍如何使用HBase的协处理器(Coprocessors),它们允许将业务逻辑部署到服务端,从而在数据访问点进行定制处理,提高处理效率。 HBase的客户端API也是进阶主题的一部分,特别是除了标准的Java API...
2. **执行操作**:服务端接收到请求后,由 Endpoint 处理并执行相应操作。 3. **返回结果**:处理完成后,Endpoint 将结果返回给客户端。 #### 四、Observer实现二级索引 除了 Endpoint,还可以使用 Observer 接口...
Thrift的编译器会生成客户端和服务端的代码,使得在C#中调用HBase服务变得简单。 接下来,为了在C#中使用Thrift2连接到HBase,你需要完成以下步骤: 1. **安装Thrift**: 首先,你需要在开发环境中安装Thrift工具,...
其中,Servlet是Java编写的服务端程序,用于处理客户端的请求;JSP则是一种动态网页技术,允许在HTML中嵌入Java代码,方便生成动态内容。 3. **JSP(JavaServer Pages)**: JSP是Java Web的重要组成部分,它允许...
通过调用HTable.setAutoFlush(false)方法可以将HTable写客户端的自动flush关闭,这样可以批量写入数据到HBase,而不是有一条put就执行一次更新,只有当put填满客户端写缓存时,才实际向HBase服务端发起写请求。...
- **配置并运行HiveServer2**:HiveServer2是Hive的服务端,负责接收客户端的查询请求并执行。你需要下载Hive,设置Hive能找到Hadoop的路径,创建仓库目录,并启动HiveServer2。 - **通过Beeline连接HiveServer2**:...
过滤器可以根据列族、列、版本等更多的条件来对数据进行过滤,基于 HBase 本身提供的三维有序(行键,列,版本有序),这些过滤器可以高效地完成查询过滤的任务,带有过滤器条件的 RPC 查询请求会把过滤器分发到各个...
同时,利用WebSocket技术,可以实现客户端与服务端的实时通信,显著降低建立HTTP请求的耗时,这在金融业务中的数据大屏实时显示中尤为重要。 在GPS风控实践中,HBase被用作海量GPS数据的存储和分析平台,主要通过...
- [ ] socket server接收到返回的数据后,分别写入到hbase数据库和kafka队列中 - [ ] 最后调用websocket server,往所有跟它建立的客户端发送接收到的数据 ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能...
3. **服务端实现**:在HBase中,服务端通常是由HBase自身提供的,它实现了Thrift IDL中定义的服务接口,处理客户端的请求。 4. **客户端调用**:在Go中,你可以使用生成的代码来创建客户端,实例化服务代理,然后...
其次,服务端是整个系统的核心,它负责接收客户端请求,处理业务逻辑,并返回响应。设计良好的服务端架构可以提高系统的可扩展性和性能。常见的服务端架构有单体架构、微服务架构和Serverless架构。在本主题中,可能...
- 基于LDAP的服务端组关系解析。 - 用户执行空间/存储空间隔离。 - **安全性** - 用户可通过登录Web UI接口开始使用集群资源。 - 提供一站式注册、申请资源、管理资源的服务。 - HDFS/MR/Hive/HBase等多种类型...