`

JDK自带线程池简介

 
阅读更多

一、简介

线程池类为 java.util.concurrent.ThreadPoolExecutor,常用构造方法为:

 

ThreadPoolExecutor(int corePoolSize, int maximumPoolSize,

long keepAliveTime, TimeUnit unit,

BlockingQueue<Runnable> workQueue,

RejectedExecutionHandler handler)

 

corePoolSize 线程池维护线程的最少数量

maximumPoolSize:线程池维护线程的最大数量

keepAliveTime 线程池维护线程所允许的空闲时间

unit 线程池维护线程所允许的空闲时间的单位

workQueue 线程池所使用的缓冲队列

handler 线程池对拒绝任务的处理策略

 

一个任务通过 execute(Runnable)方法被添加到线程池,任务就是一个 Runnable类型的对象,任务的执行方法就是 Runnable类型对象的run()方法。

当一个任务通过execute(Runnable)方法欲添加到线程池时:

l  如果此时线程池中的数量小于corePoolSize,即使线程池中的线程都处于空闲状态,也要创建新的线程来处理被添加的任务。

l  如果此时线程池中的数量等于 corePoolSize,但是缓冲队列 workQueue未满,那么任务被放入缓冲队列。

l  如果此时线程池中的数量大于corePoolSize,缓冲队列workQueue满,并且线程池中的数量小于maximumPoolSize,建新的线程来处理被添加的任务。

l  如果此时线程池中的数量大于corePoolSize,缓冲队列workQueue满,并且线程池中的数量等于maximumPoolSize,那么通过 handler所指定的策略来处理此任务。也就是:处理任务的优先级为:核心线程corePoolSize、任务队列workQueue、最大线程maximumPoolSize,如果三者都满了,使用handler处理被拒绝的任务。

l  当线程池中的线程数量大于 corePoolSize时,如果某线程空闲时间超过keepAliveTime,线程将被终止。这样,线程池可以动态的调整池中的线程数。

unit可选的参数为java.util.concurrent.TimeUnit中的几个静态属性:

NANOSECONDS

MICROSECONDS

MILLISECONDS

SECONDS

workQueue常用的是:java.util.concurrent.ArrayBlockingQueue

handler有四个选择:

ThreadPoolExecutor.AbortPolicy()

抛出java.util.concurrent.RejectedExecutionException异常

ThreadPoolExecutor.CallerRunsPolicy()

重试添加当前的任务,他会自动重复调用execute()方法

ThreadPoolExecutor.DiscardOldestPolicy()

抛弃旧的任务

 

 

 

ThreadPoolExecutor.DiscardPolicy()

 

抛弃当前的任务

 

 

 

二、相关参考

 

 

 

一个 ExecutorService,它使用可能的几个池线程之一执行每个提交的任务,通常使用 Executors 工厂方法配置。 

 

 

 

线程池可以解决两个不同问题:由于减少了每个任务调用的开销,它们通常可以在执行大量异步任务时提供增强的性能,并且还可以提供绑定和管理资源(包括执行集合任务时使用的线程)的方法。每个 ThreadPoolExecutor 还维护着一些基本的统计数据,如完成的任务数。 

 

 

 

为了便于跨大量上下文使用,此类提供了很多可调整的参数和扩展挂钩。但是,强烈建议程序员使用较为方便的Executors 工厂方法 Executors.newCachedThreadPool()(无界线程池,可以进行自动线程回收)、Executors.newFixedThreadPool(int)(固定大小线程池)和 Executors.newSingleThreadExecutor()(单个后台线程),它们均为大多数使用场景预定义了设置。否则,在手动配置和调整此类时,使用以下指导:

 

 

 

核心和最大池大小

 

ThreadPoolExecutor 将根据 corePoolSize(参见 getCorePoolSize())和 maximumPoolSize(参见 getMaximumPoolSize())设置的边界自动调整池大小。当新任务在方法 execute(java.lang.Runnable) 中提交时,如果运行的线程少于 corePoolSize,则创建新线程来处理请求,即使其他辅助线程是空闲的。如果运行的线程多于 corePoolSize 而少于 maximumPoolSize,则仅当队列满时才创建新线程。如果设置的 corePoolSize  maximumPoolSize 相同,则创建了固定大小的线程池。如果将 maximumPoolSize设置为基本的无界值(如 Integer.MAX_VALUE),则允许池适应任意数量的并发任务。在大多数情况下,核心和最大池大小仅基于构造来设置,不过也可以使用 setCorePoolSize(int)  setMaximumPoolSize(int) 进行动态更改。

 

 

 

按需构造

 

默认情况下,即使核心线程最初只是在新任务需要时才创建和启动的,也可以使用方法 prestartCoreThread() prestartAllCoreThreads() 对其进行动态重写。

 

 

 

创建新线程

 

使用 ThreadFactory 创建新线程。如果没有另外说明,则在同一个 ThreadGroup 中一律使用Executors.defaultThreadFactory() 创建线程,并且这些线程具有相同的 NORM_PRIORITY 优先级和非守护进程状态。通过提供不同的 ThreadFactory,可以改变线程的名称、线程组、优先级、守护进程状态,等等。如果从 newThread 返回 null ThreadFactory 未能创建线程,则执行程序将继续运行,但不能执行任何任务。

 

保持活动时间

 

如果池中当前有多于 corePoolSize 的线程,则这些多出的线程在空闲时间超过 keepAliveTime 时将会终止(参见getKeepAliveTime(java.util.concurrent.TimeUnit))。这提供了当池处于非活动状态时减少资源消耗的方法。如果池后来变得更为活动,则可以创建新的线程。也可以使用方法 setKeepAliveTime(long, java.util.concurrent.TimeUnit) 动态地更改此参数。使用Long.MAX_VALUE TimeUnit.NANOSECONDS 的值在关闭前有效地从以前的终止状态禁用空闲线程。

 

 

 

排队

 

所有 BlockingQueue 都可用于传输和保持提交的任务。可以使用此队列与池大小进行交互:

 

A.        如果运行的线程少于 corePoolSize,则 Executor 始终首选添加新的线程,而不进行排队。

 

B.        如果运行的线程等于或多于 corePoolSize,则 Executor 始终首选将请求加入队列,而不添加新的线程。

 

C.        如果无法将请求加入队列,则创建新的线程,除非创建此线程超出 maximumPoolSize,在这种情况下,任务将被拒绝。

 

 

 

排队有三种通用策略:

 

直接提交。工作队列的默认选项是 SynchronousQueue,它将任务直接提交给线程而不保持它们。在此,如果不存在可用于立即运行任务的线程,则试图把任务加入队列将失败,因此会构造一个新的线程。此策略可以避免在处理可能具有内部依赖性的请求集合时出现锁定。直接提交通常要求无界 maximumPoolSizes 以避免拒绝新提交的任务。当命令以超过队列所能处理的平均数连续到达时,此策略允许无界线程具有增长的可能性。

 

无界队列。使用无界队列(例如,不具有预定义容量的 LinkedBlockingQueue)将导致在所有 corePoolSize 线程都忙的情况下将新任务加入队列。这样,创建的线程就不会超过 corePoolSize。(因此,maximumPoolSize 的值也就无效了。)当每个任务完全独立于其他任务,即任务执行互不影响时,适合于使用无界队列;例如,在 Web 页服务器中。这种排队可用于处理瞬态突发请求,当命令以超过队列所能处理的平均数连续到达时,此策略允许无界线程具有增长的可能性。

 

有界队列。当使用有限的 maximumPoolSizes 时,有界队列(如 ArrayBlockingQueue)有助于防止资源耗尽,但是可能较难调整和控制。队列大小和最大池大小可能需要相互折衷:使用大型队列和小型池可以最大限度地降低 CPU 使用率、操作系统资源和上下文切换开销,但是可能导致人工降低吞吐量。如果任务频繁阻塞(例如,如果它们是 I/O 边界),则系统可能为超过您许可的更多线程安排时间。使用小型队列通常要求较大的池大小,CPU 使用率较高,但是可能遇到不可接受的调度开销,这样也会降低吞吐量。

 

被拒绝的任务

 

 

 

 Executor 已经关闭,并且 Executor 将有限边界用于最大线程和工作队列容量,且已经饱和时,在方法execute(java.lang.Runnable) 中提交的新任务将被拒绝。在以上两种情况下,execute 方法都将调用其 RejectedExecutionHandler RejectedExecutionHandler.rejectedExecution(java.lang.Runnable, java.util.concurrent.ThreadPoolExecutor) 方法。下面提供了四种预定义的处理程序策略:

 

 

A.        在默认的 ThreadPoolExecutor.AbortPolicy 中,处理程序遭到拒绝将抛出运行时 RejectedExecutionException

 

B.         ThreadPoolExecutor.CallerRunsPolicy 中,线程调用运行该任务的 execute 本身。此策略提供简单的反馈控制机制,能够减缓新任务的提交速度。

 

C.         ThreadPoolExecutor.DiscardPolicy 中,不能执行的任务将被删除。

 

D.         ThreadPoolExecutor.DiscardOldestPolicy 中,如果执行程序尚未关闭,则位于工作队列头部的任务将被删除,然后重试执行程序(如果再次失败,则重复此过程)。

 

定义和使用其他种类的 RejectedExecutionHandler 类也是可能的,但这样做需要非常小心,尤其是当策略仅用于特定容量或排队策略时。

 

 

 

挂钩方法

 

此类提供 protected 可重写的 beforeExecute(java.lang.Thread, java.lang.Runnable)  afterExecute(java.lang.Runnable, java.lang.Throwable) 方法,这两种方法分别在执行每个任务之前和之后调用。它们可用于操纵执行环境;例如,重新初始化ThreadLocal、搜集统计信息或添加日志条目。此外,还可以重写方法 terminated() 来执行 Executor 完全终止后需要完成的所有特殊处理。

 

 

 

如果挂钩或回调方法抛出异常,则内部辅助线程将依次失败并突然终止。

 

 

 

队列维护

 

方法 getQueue() 允许出于监控和调试目的而访问工作队列。强烈反对出于其他任何目的而使用此方法。remove(java.lang.Runnable)  purge() 这两种方法可用于在取消大量已排队任务时帮助进行存储回收。

 

 

 

 

import java.util.concurrent.ArrayBlockingQueue;  
import java.util.concurrent.ThreadPoolExecutor;  
import java.util.concurrent.TimeUnit;  
  
public class TestThreadPool {  
  
    private static int produceTaskSleepTime = 2;  
      
    private static int produceTaskMaxNumber = 10;  
  
    public static void main(String[] args) {  
  
        // 构造一个线程池  
        ThreadPoolExecutor threadPool = new ThreadPoolExecutor(2, 4, 3,  
                TimeUnit.SECONDS, new ArrayBlockingQueue<Runnable>(3),  
                new ThreadPoolExecutor.DiscardOldestPolicy());  
  
        for (int i = 1; i <= produceTaskMaxNumber; i++) {  
            try {  
                String task = "task@ " + i;  
                System.out.println("创建任务并提交到线程池中:" + task);  
                threadPool.execute(new ThreadPoolTask(task));  
  
                Thread.sleep(produceTaskSleepTime);  
            } catch (Exception e) {  
                e.printStackTrace();  
            }  
        }  
    }  
}  

 

import java.io.Serializable;  
  
public class ThreadPoolTask implements Runnable, Serializable {  
  
    private Object attachData;  
  
    ThreadPoolTask(Object tasks) {  
        this.attachData = tasks;  
    }  
  
    public void run() {  
          
        System.out.println("开始执行任务:" + attachData);  
          
        attachData = null;  
    }  
  
    public Object getTask() {  
        return this.attachData;  
    }  
}  

 

 

 执行结果:

               创建任务并提交到线程池中:task@ 1

开始执行任务:task@ 1

创建任务并提交到线程池中:task@ 2

开始执行任务:task@ 2

创建任务并提交到线程池中:task@ 3

创建任务并提交到线程池中:task@ 4

开始执行任务:task@ 3

创建任务并提交到线程池中:task@ 5

开始执行任务:task@ 4

创建任务并提交到线程池中:task@ 6

创建任务并提交到线程池中:task@ 7

创建任务并提交到线程池中:task@ 8

开始执行任务:task@ 5

开始执行任务:task@ 6

创建任务并提交到线程池中:task@ 9

开始执行任务:task@ 7

创建任务并提交到线程池中:task@ 10

开始执行任务:task@ 8

开始执行任务:task@ 9

开始执行任务:task@ 10

分享到:
评论

相关推荐

    JDK自带线程池分析

    JDK自带线程池分析 JDK 自带线程池是 Java 语言中用于管理和执行线程的工具,旨在提高多线程编程的效率和灵活性。本文将详细介绍 JDK 自带线程池的组成、创建方法、优点和常见应用场景。 多线程技术 多线程技术是...

    jdk自带线程池实例详解

    jdk自带线程池实例详解 jdk自带的线程池是Java开发中一个非常重要的概念,特别是在多线程编程中。线程池是线程的容器,每次只执行额定数量的线程,线程池就是用来管理这些额定数量的线程。下面我们来详细了解jdk...

    tomcat7内置jdk版

    “相关的性能参数已经优化好”意味着开发者可能已经调整了Tomcat的默认配置,例如线程池大小、内存分配、连接超时等关键参数,以提高其在特定工作负载下的性能表现。这有助于在服务器高负载下保持良好的响应速度和...

    jdk_api_1_6中文版

    5. `jconsole`:JDK自带的JVM监控工具,提供性能分析和内存管理等功能。 6. `jmap`:用于查看堆内存详细信息,辅助诊断内存泄漏问题。 四、JDK 1.6的开发实践 在实际开发中,JDK 1.6广泛应用于企业级应用、桌面...

    _JAVA线程池介绍以及简单实例.doc

    Java线程池是一种高效利用系统资源的机制,它允许开发者预先配置一定数量的线程,以便在...通过对JDK自带的`ThreadPoolExecutor`源码的学习,我们可以更深入地了解线程池的工作细节,以便更好地利用这一强大的工具。

    简单的JAVA HTML服务器

    实现原理为采用Socket原理、线程池、输入输出流及简单的HTTP协议,麻烦虽小,五脏俱全,...JAR编译的JDK版本1.6,至少要JDK1.5以上,因为其中用到JDK自带的线程池,内附源码,用户可以自已将源码再打包。 下载路径为:

    Java 高并发六:JDK并发包2详解

    JDK提供了一系列的线程池实现,包括`ThreadPoolExecutor`、`ScheduledThreadPoolExecutor`以及`Executors`工厂类。`ThreadPoolExecutor`是线程池的核心实现,它接受五个参数进行初始化: 1. `corePoolSize`: 核心...

    MThread:实现线程池已有的功能,同时对线程池的本身的使用与运行情况提供监控;与ILog组件配合使用,可以实现线程上下文的自动切换

    普通JDK自带的线程池时无法实现线程池的自动切换,基于监控与上下文自动切换的需求,封住了一套taxi开头的线程池,接入方式很简单,它的使用方式与Jdk的使用基本方式一致,只需在对应的类前加一个Taxi,现将对应方式...

    [Java参考文档].JDK_API_1_6_zh_CN.CHM百度网盘下载地址

    - **并发工具库增强**:增加了 ExecutorService 接口和一系列实现类,使得线程池的管理更加简单易用。 - **集合框架增强**:新增了并发集合类,如 ConcurrentHashMap 和 CopyOnWriteArrayList,提高了多线程环境下的...

    7000字+24张图带你彻底弄懂线程池.doc

    RejectedExecutionHandler 的实现 JDK 自带的默认有 4 种: * AbortPolicy:丢弃任务,抛出运行时异常 * CallerRunsPolicy:由提交任务的线程来执行任务 * DiscardPolicy:丢弃这个任务,但是不抛异常 * ...

    如何查看服务器配置 Myeclipse如何配置Tomcat服务器和JDK.pdf

    MyEclipse自带的JDK可能不是你想要使用的版本,或者你可能希望针对特定项目使用不同的JDK。在Tomcat配置界面,选择“JRE”选项卡,点击“Add”按钮。在弹出的窗口中,浏览并选择你系统中安装的JDK路径,然后点击...

    JDK12-java-se-monitoring-and-management-guide.pdf

    这涉及到使用JDK自带的工具如`jstat`、`jmap`、`jhat`和`jfr`(Java飞行记录器)等。 4. **垃圾回收**:垃圾回收是Java性能管理的重要方面,指南提供了关于不同垃圾收集器的详细信息,如G1、Shenandoah、ZGC等,...

    Java问题定位技术.pdf

    在介绍Java泥潭问题时,文档提到了Runtime.getRuntime().exec()的不稳定性和JDK自带的Timer类的使用场合,以及池的合理设计,例如对象池、线程池和连接池的设计。还特别提醒了JDK1.5线程池和Timer使用的陷阱。 最后...

    子线程任务发生异常,主线程事务如何回滚

    常用的线程池有两种:JDK 自带的和 Spring 线程池。 在本文中,我们使用 Spring API 来构建一个线程池。线程池可以避免线程无限制的被创建,避免应用资源无限制的被占用导致的系统宕掉的问题。 三、异常的捕获 当...

    java自带并发框架

    Java自带的并发框架通过提供高级的并发工具和类,使开发者能够更安全、更高效地编写多线程程序,避免了直接操作底层并发原语带来的复杂性和潜在风险。通过理解和熟练使用这些工具,我们可以构建出更健壮、更具伸缩性...

    亿阳信通java编程题

    5. JDK自带的jvisualvm工具可以提供CPU监控、内存分析、线程检查等多方面信息,因此答案是D,都可以。 6. 这段代码涉及到Java的嵌套类。在外部类中直接创建内部类的对象,会先执行外部类的构造器,然后是内部类的...

    JDK18-java-se-monitoring-and-management-guide.pdf

    包括选择合适的垃圾回收算法、调整堆大小、优化线程池等多方面的优化技术。 6. 故障排除 故障排除是Java应用程序的重要阶段。Java SE监控和管理指南提供了详细的指导和best practice,帮助开发者和管理员对Java...

    netty学习:bio,nio到netty各种使用案例,包括基础使用案例,各api使用方法,零拷贝,websocket,群聊,私聊,编码,解码,自定义协议,protobuf等使用案例,rpc服务器,客户端等等学习

    净值 jdk bio,nio,aio各种使用案例,深入理解netty,结合源码以及文章分析: jdk原生nio的缓冲区使用 ...使用netty自带的编码解码器编写一个聊天室 在9的基础上加入私聊功能 在10的基础上加入pr

Global site tag (gtag.js) - Google Analytics