1.合理使用索引
索引是数据库中重要的数据结构,它的根本目的就是为了提高查询效率。现在大多数的数据库产品都采用IBM最先提出的ISAM索引结构。索引的使用要恰到好处,其使用原则如下:
●在经常进行连接,但是没有指定为外键的列上建立索引,而不经常连接的字段则由优化器自动生成索引。
●在频繁进行排序或分组(即进行group by或order by操作)的列上建立索引。
●在条件表达式中经常用到的不同值较多的列上建立检索,在不同值少的列上不要建立索引。比如在雇员表的“性别”列上只有“男”与“女”两个不同值,因此就无必要建立索引。如果建立索引不但不会提高查询效率,反而会严重降低更新速度。
●如果待排序的列有多个,可以在这些列上建立复合索引(compound index)。
●使用系统工具。如Informix数据库有一个tbcheck工具,可以在可疑的索引上进行检查。在一些数据库服务器上,索引可能失效或者因为频繁操作而使得读取效率降低,如果一个使用索引的查询不明不白地慢下来,可以试着用tbcheck工具检查索引的完整性,必要时进行修复。另外,当数据库表更新大量数据后,删除并重建索引可以提高查询速度。
2.避免或简化排序
应当简化或避免对大型表进行重复的排序。当能够利用索引自动以适当的次序产生输出时,优化器就避免了排序的步骤。以下是一些影响因素:
●索引中不包括一个或几个待排序的列;
●group by或order by子句中列的次序与索引的次序不一样;
●排序的列来自不同的表。
为了避免不必要的排序,就要正确地增建索引,合理地合并数据库表(尽管有时可能影响表的规范化,但相对于效率的提高是值得的)。如果排序不可避免,那么应当试图简化它,如缩小排序的列的范围等。
3.消除对大型表行数据的顺序存取
在嵌套查询中,对表的顺序存取对查询效率可能产生致命的影响。比如采用顺序存取策略,一个嵌套3层的查询,如果每层都查询1000行,那么这个查询就要查询10亿行数据。避免这种情况的主要方法就是对连接的列进行索引。例如,两个表:学生表(学号、姓名、年龄……)和选课表(学号、课程号、成绩)。如果两个表要做连接,就要在“学号”这个连接字段上建立索引。
还可以使用并集来避免顺序存取。尽管在所有的检查列上都有索引,但某些形式的where子句强迫优化器使用顺序存取。下面的查询将强迫对orders表执行顺序操作:
SELECT * FROM orders WHERE (customer_num=104 AND order_num>;1001) OR order_num=1008
虽然在customer_num和order_num上建有索引,但是在上面的语句中优化器还是使用顺序存取路径扫描整个表。因为这个语句要检索的是分离的行的集合,所以应该改为如下语句:
SELECT * FROM orders WHERE customer_num=104 AND order_num>;1001
UNION
SELECT * FROM orders WHERE order_num=1008
这样就能利用索引路径处理查询。
4.避免相关子查询
一个列的标签同时在主查询和where子句中的查询中出现,那么很可能当主查询中的列值改变之后,子查询必须重新查询一次。查询嵌套层次越多,效率越低,因此应当尽量避免子查询。如果子查询不可避免,那么要在子查询中过滤掉尽可能多的行。
5.避免困难的正规表达式
MATCHES和LIKE关键字支持通配符匹配,技术上叫正规表达式。但这种匹配特别耗费时间。例如:SELECT * FROM customer WHERE zipcode LIKE “98_ _ _”
即使在zipcode字段上建立了索引,在这种情况下也还是采用顺序扫描的方式。如果把语句改为SELECT * FROM customer WHERE zipcode >;“98000”,在执行查询时就会利用索引来查询,显然会大大提高速度。
另外,还要避免非开始的子串。例如语句:SELECT * FROM customer WHERE zipcode[2,3] >;“80”,在where子句中采用了非开始子串,因而这个语句也不会使用索引。
6.使用临时表加速查询
把表的一个子集进行排序并创建临时表,有时能加速查询。它有助于避免多重排序操作,而且在其他方面还能简化优化器的工作。例如:
SELECT cust.name,rcvbles.balance,……other columns
FROM cust,rcvbles
WHERE cust.customer_id = rcvlbes.customer_id
AND rcvblls.balance>;0
AND cust.postcode>;“98000”
ORDER BY cust.name
如果这个查询要被执行多次而不止一次,可以把所有未付款的客户找出来放在一个临时文件中,并按客户的名字进行排序:
SELECT cust.name,rcvbles.balance,……other columns
FROM cust,rcvbles
WHERE cust.customer_id = rcvlbes.customer_id
AND rcvblls.balance>;0
ORDER BY cust.name
INTO TEMP cust_with_balance
然后以下面的方式在临时表中查询:
SELECT * FROM cust_with_balance
WHERE postcode>;“98000”
临时表中的行要比主表中的行少,而且物理顺序就是所要求的顺序,减少了磁盘I/O,所以查询工作量可以得到大幅减少。
注意:临时表创建后不会反映主表的修改。在主表中数据频繁修改的情况下,注意不要丢失数据。
7.用排序来取代非顺序存取
非顺序磁盘存取是最慢的操作,表现在磁盘存取臂的来回移动。SQL语句隐藏了这一情况,使得我们在写应用程序时很容易写出要求存取大量非顺序页的查询。
有些时候,用数据库的排序能力来替代非顺序的存取能改进查询。
下面我们举一个制造公司的例子来说明如何进行查询优化。制造公司数据库中包括3个表,模式如下所示:
1.part表
零件号 零件描述 其他列
(part_num) (part_desc) (other column)
102,032 Seageat 30G disk ……
500,049 Novel 10M network card ……
……
2.vendor表
厂商号 厂商名 其他列
(vendor _num) (vendor_name) (other column)
910,257 Seageat Corp ……
523,045 IBM Corp ……
……
3.parven表
零件号 厂商号 零件数量
(part_num) (vendor_num) (part_amount)
102,032 910,257 3,450,000
234,423 321,001 4,000,000
……
下面的查询将在这些表上定期运行,并产生关于所有零件数量的报表:
SELECT part_desc,vendor_name,part_amount
FROM part,vendor,parven
WHERE part.part_num=parven.part_num
AND parven.vendor_num = vendor.vendor_num
ORDER BY part.part_num
如果不建立索引,上述查询代码的开销将十分巨大。为此,我们在零件号和厂商号上建立索引。索引的建立避免了在嵌套中反复扫描。关于表与索引的统计信息如下:
表 行尺寸 行数量 每页行数量 数据页数量
(table) (row size) (Row count) (Rows/Pages) (Data Pages)
part 150 10,000 25 400
Vendor 150 1,000 25 40
Parven 13 15,000 300 50
索引 键尺寸 每页键数量 页面数量
(Indexes) (Key Size) (Keys/Page) (Leaf Pages)
part 4 500 20
Vendor 4 500 2
Parven 8 250 60
看起来是个相对简单的3表连接,但是其查询开销是很大的。通过查看系统表可以看到,在part_num上和vendor_num上有簇索引,因此索引是按照物理顺序存放的。parven表没有特定的存放次序。这些表的大小说明从缓冲页中非顺序存取的成功率很小。此语句的优化查询规划是:首先从part中顺序读取400页,然后再对parven表非顺序存取1万次,每次2页(一个索引页、一个数据页),总计2万个磁盘页,最后对vendor表非顺序存取1.5万次,合3万个磁盘页。可以看出在这个索引好的连接上花费的磁盘存取为5.04万次。
实际上,我们可以通过使用临时表分3个步骤来提高查询效率:
1.从parven表中按vendor_num的次序读数据:
SELECT part_num,vendor_num,price
FROM parven
ORDER BY vendor_num
INTO temp pv_by_vn
这个语句顺序读parven(50页),写一个临时表(50页),并排序。假定排序的开销为200页,总共是300页。
2.把临时表和vendor表连接,把结果输出到一个临时表,并按part_num排序:
SELECT pv_by_vn,* vendor.vendor_num
FROM pv_by_vn,vendor
WHERE pv_by_vn.vendor_num=vendor.vendor_num
ORDER BY pv_by_vn.part_num
INTO TMP pvvn_by_pn
DROP TABLE pv_by_vn
这个查询读取pv_by_vn(50页),它通过索引存取vendor表1.5万次,但由于按vendor_num次序排列,实际上只是通过索引顺序地读vendor表(40+2=42页),输出的表每页约95行,共160页。写并存取这些页引发5*160=800次的读写,索引共读写892页。
3.把输出和part连接得到最后的结果:
SELECT pvvn_by_pn.*,part.part_desc
FROM pvvn_by_pn,part
WHERE pvvn_by_pn.part_num=part.part_num
DROP TABLE pvvn_by_pn
这样,查询顺序地读pvvn_by_pn(160页),通过索引读part表1.5万次,由于建有索引,所以实际上进行1772次磁盘读写,优化比例为30∶1。笔者在Informix Dynamic Sever上做同样的实验,发现在时间耗费上的优化比例为5∶1(如果增加数据量,比例可能会更大)。
小 结
20%的代码用去了80%的时间,这是程序设计中的一个著名定律,在数据库应用程序中也同样如此。我们的优化要抓住关键问题,对于数据库应用程序来说,重点在于SQL的执行效率。查询优化的重点环节是使得数据库服务器少从磁盘中读数据以及顺序读页而不是非顺序读页。
分享到:
相关推荐
"布谷鸟算法与电导增量法结合的MPPT仿真:光伏系统中的快速高效追踪技术",光伏MPPT仿真 布谷鸟算法MPPT对照布谷鸟算法结合电导增量法MPPT。 可以看出布谷鸟结合电导增量法,追踪速度更快,波动更小。 ,光伏MPPT仿真;布谷鸟算法MPPT;布谷鸟算法结合电导增量法MPPT;追踪速度;波动,"布谷鸟算法结合电导增量法:提升光伏MPPT仿真追踪效率"
"基于现代控制理论的Buck变换器恒功率负载建模与Simulink仿真实践:亲手搭建与文献参考",恒功率负载下Buck变器的建模与控制simulink仿真文 件 亲手搭建 现代控制理论 附赠参考文献 另有一份word或PDF报告可加价 ,核心关键词:Buck变换器建模;恒功率负载;Simulink仿真;现代控制理论;参考文献;Word或PDF报告。,Buck变换器在恒功率负载下的建模与控制Simulink仿真研究报告
基于Comsol的弱形式求解法:三维光子晶体能带结构研究,Comsol弱形式求解三维光子晶体能带。 ,Comsol;弱形式求解;三维光子晶体;能带,Comsol求解三维光子晶体能带弱形式法
多重法诺共振拟合技术:Comsol方法论及其应用研究,comsol多重法诺共振拟合。 ,comsol; 多重法诺共振; 共振拟合; 拟合方法; 频率分析,COMSOL多重法诺共振拟合技术
第3章 大模型的架构-大语言模型通识(赵建勇).pptx
TDM网主用汇聚节点NE20故障案例分析.pdf
Comsol变压器电路多物理场耦合仿真:磁场、振动规律及固体力学求解,详实学习资料与模型分享,Comsol变压器电路-磁场-振动多物理场耦合仿真,求解了电磁场和固体力学,描述了在磁致伸缩下的变压器铁心的振动规律;提供comsol详细学习资料及模型, ,核心关键词:Comsol变压器电路; 磁场; 振动; 多物理场耦合仿真; 电磁场求解; 固体力学; 磁致伸缩; 变压器铁心振动规律; Comsol学习资料; 模型。,"Comsol仿真:多物理场耦合下的变压器铁心振动规律"
"COMSOL光学仿真中经典平面手性与BIC最大平面效应研究:能带分析、Q因子优化与正斜入射琼斯矩阵透射谱",COMSOL 经典平面手性 光学仿真,BIC 最大平面手性,包含能带,Q因子,正入射斜入射琼斯矩阵透射谱,动量空间(布里渊区)偏振场分布,磁场分布,面上箭头。 ,关键词:COMSOL; 经典平面手性; 光学仿真; BIC; 最大平面手性; 能带; Q因子; 入射(正/斜); 琼斯矩阵透射谱; 动量空间; 布里渊区; 偏振场分布; 磁场分布。,"COMSOL仿真揭示光学平面手性特征:BIC的透射谱与偏振场分布研究"
LianTuYunsetup3-0-6.zip
"FR4介质板,2GHz高增益微带阵列天线,采用HFSS仿真模型,实现高效率低驻波效果",2GHz微带阵列天线,HFSS仿真模型,介质板为FR4,增益4.5dBi,驻波小于1.5。 ,2GHz微带阵列天线; HFSS仿真模型; FR4介质板; 增益4.5dBi; 驻波小于1.5; 关键参数。,2GHz阵列天线:FR4介质板,HFSS仿真,高增益低驻波
电机控制专用集成电路+(PDF格式)
"麦格米特品牌电子凸轮追剪曲线生成算法:跨平台编程语言转换的电机运动控制算法",电子凸轮追剪曲线生成算法。 品牌:麦格米特(算法,理解后可转成其他品牌PLC或任何一种编程语言) 是一种用来控制电机运动的算法,它可以根据给定的剪切曲线生成电子凸轮的运动轨迹。 这种算法可以使用各种编程语言来实现,例如PLC编程语言、C++、Python等。 p ,电子凸轮追剪曲线生成算法; 算法转换; 电机运动控制; 编程语言实现; 麦格米特品牌。,电子凸轮追剪曲线生成算法:跨品牌电机运动控制算法
移相全桥变换器:PI控制与MPC下输出电流模型的预测控制及性能比较仿真研究,移相全桥变器输出电流模型预测控制 输入电压514V,输出电流110A,输出功率由12.1kW突变至24.2kW,输出电流不变,变压器变比2.9 仿真包括PI控制和MPC下输出电流波形对比、移相比变化波形、PI控制和MPC模式切 包括仿真和参考的lunwen ,移相全桥变换器; 输出电流模型预测控制; 输入电压与输出电流; 功率突变; 变压器变比; PI控制; MPC控制; 波形对比; 模式切换; 仿真与参考论文,移相全桥变换器:MPC与PI控制下的输出电流仿真对比研究
NAYUTA:一种基于分组密码的加密算法.pdf
直流电压环境下GIS盆式绝缘子Comsol仿真分析:一种高效模拟方法与应用研究,直流电压下 GIS 盆式绝缘子Comsol仿真 ,直流电压; GIS盆式绝缘子; Comsol仿真,"Comsol仿真直流电压下GIS盆式绝缘子"
人体接近监测
基于分层学习的自适应动态规划.pdf
多种数据补全策略对商超客流量预测影响研究.pdf
"COMSOL仿真超表面复现技术:多级分解通用化模型适配不同形状与阵列研究,视屏演示与模型图示全囊括",comsol仿真超表面复现:多级分解通用,适用各种形状,以下是两篇文献(六面体阵列、圆柱体阵列)的复现都相吻合。 包含视屏讲解及模型,如图所示 ,comsol仿真; 超表面复现; 多级分解通用; 适用各种形状; 六面体阵列复现; 圆柱体阵列复现; 视频讲解; 模型示例。,Comsol仿真超表面复现:多级分解通用法视频讲解与模型展示
内容概要:本文详细介绍了针对 Windows 服务器进行安全配置的最佳实践和基线标准。涵盖的内容包括操作系统的安全基本安装、用户账号口令政策设定、认证授权措施落实、详细的日志记录审计制度、确保协议层面的安全性调整及其他各类增强安全的操作指引。这些基线配置涵盖了从账户管理和密码复杂度到防火墙设置以及自动更新和反病毒保护等多个方面,每一步都有具体的检测方法和评判标准。 适合人群:本文件适用于负责Windows系统的IT专业人员,尤其是服务器管理员及安全维护专员。 使用场景及目标:本文帮助读者评估和部署关键安全配置选项以确保服务器的健壮性与隐私保障能力,具体目标为减少攻击表面,预防潜在威胁,并满足法律法规的要求。此外还包括通过一系列细致入微的规定加强网络防护力度,确保敏感信息不会轻易泄露出去。最终目的是为各机构提供一种系统化的安全框架来进行日常运维。 其他说明:此配置建议不仅涉及硬件和技术层面的问题,还考虑到了物理安全和社会工程学等方面的考量,从而构成了完整的多层次纵深防御策略。它强调了定期审查和调整安全措施的重要性,以适应不断变化的安全态势和技术发展趋势。