锁的释放-获取建立的happens before 关系
锁是java并发编程中最重要的同步机制。锁除了让临界区互斥执行外,还可以让释放锁的线程向获取同一个锁的线程发送消息。
下面是锁释放-获取的示例代码:
class MonitorExample { int a = 0; public synchronized void writer() { //1 a++; //2 } //3 public synchronized void reader() { //4 int i = a; //5 …… } //6 }
假设线程A执行writer()方法,随后线程B执行reader()方法。根据happens before规则,这个过程包含的happens before 关系可以分为两类:
- 根据程序次序规则,1 happens before 2, 2 happens before 3; 4 happens before 5, 5 happens before 6。
- 根据监视器锁规则,3 happens before 4。
- 根据happens before 的传递性,2 happens before 5。
上述happens before 关系的图形化表现形式如下:
在上图中,每一个箭头链接的两个节点,代表了一个happens before 关系。黑色箭头表示程序顺序规则;橙色箭头表示监视器锁规则;蓝色箭头表示组合这些规则后提供的happens before保证。
上图表示在线程A释放了锁之后,随后线程B获取同一个锁。在上图中,2 happens before 5。因此,线程A在释放锁之前所有可见的共享变量,在线程B获取同一个锁之后,将立刻变得对B线程可见。
锁释放和获取的内存语义
当线程释放锁时,JMM会把该线程对应的本地内存中的共享变量刷新到主内存中。以上面的MonitorExample程序为例,A线程释放锁后,共享数据的状态示意图如下:
当线程获取锁时,JMM会把该线程对应的本地内存置为无效。从而使得被监视器保护的临界区代码必须要从主内存中去读取共享变量。下面是锁获取的状态示意图:
对比锁释放-获取的内存语义与volatile写-读的内存语义,可以看出:锁释放与volatile写有相同的内存语义;锁获取与volatile读有相同的内存语义。
下面对锁释放和锁获取的内存语义做个总结:
- 线程A释放一个锁,实质上是线程A向接下来将要获取这个锁的某个线程发出了(线程A对共享变量所做修改的)消息。
- 线程B获取一个锁,实质上是线程B接收了之前某个线程发出的(在释放这个锁之前对共享变量所做修改的)消息。
- 线程A释放锁,随后线程B获取这个锁,这个过程实质上是线程A通过主内存向线程B发送消息。
锁内存语义的实现
本文将借助ReentrantLock的源代码,来分析锁内存语义的具体实现机制。
请看下面的示例代码:
class ReentrantLockExample { int a = 0; ReentrantLock lock = new ReentrantLock(); public void writer() { lock.lock(); //获取锁 try { a++; } finally { lock.unlock(); //释放锁 } } public void reader () { lock.lock(); //获取锁 try { int i = a; …… } finally { lock.unlock(); //释放锁 } } }
在ReentrantLock中,调用lock()方法获取锁;调用unlock()方法释放锁。
ReentrantLock的实现依赖于java同步器框架AbstractQueuedSynchronizer(本文简称之为AQS)。AQS使用一个整型的volatile变量(命名为state)来维护同步状态,马上我们会看到,这个volatile变量是ReentrantLock内存语义实现的关键。 下面是ReentrantLock的类图(仅画出与本文相关的部分):
ReentrantLock分为公平锁和非公平锁,我们首先分析公平锁。
使用公平锁时,加锁方法lock()的方法调用轨迹如下:
- ReentrantLock : lock()
- FairSync : lock()
- AbstractQueuedSynchronizer : acquire(int arg)
- ReentrantLock : tryAcquire(int acquires)
在第4步真正开始加锁,下面是该方法的源代码:
protected final boolean tryAcquire(int acquires) { final Thread current = Thread.currentThread(); int c = getState(); //获取锁的开始,首先读volatile变量state if (c == 0) { if (isFirst(current) && compareAndSetState(0, acquires)) { setExclusiveOwnerThread(current); return true; } } else if (current == getExclusiveOwnerThread()) { int nextc = c + acquires; if (nextc < 0) throw new Error("Maximum lock count exceeded"); setState(nextc); return true; } return false; }
从上面源代码中我们可以看出,加锁方法首先读volatile变量state。
在使用公平锁时,解锁方法unlock()的方法调用轨迹如下:
- ReentrantLock : unlock()
- AbstractQueuedSynchronizer : release(int arg)
- Sync : tryRelease(int releases)
在第3步真正开始释放锁,下面是该方法的源代码:
protected final boolean tryRelease(int releases) { int c = getState() - releases; if (Thread.currentThread() != getExclusiveOwnerThread()) throw new IllegalMonitorStateException(); boolean free = false; if (c == 0) { free = true; setExclusiveOwnerThread(null); } setState(c); //释放锁的最后,写volatile变量state return free; }
从上面的源代码我们可以看出,在释放锁的最后写volatile变量state。
公平锁在释放锁的最后写volatile变量state;在获取锁时首先读这个volatile变量。根据volatile的happens-before规则,释放锁的线程在写volatile变量之前可见的共享变量,在获取锁的线程读取同一个volatile变量后将立即变的对获取锁的线程可见。
现在我们分析非公平锁的内存语义的实现。
非公平锁的释放和公平锁完全一样,所以这里仅仅分析非公平锁的获取。
使用公平锁时,加锁方法lock()的方法调用轨迹如下:
- ReentrantLock : lock()
- NonfairSync : lock()
- AbstractQueuedSynchronizer : compareAndSetState(int expect, int update)
在第3步真正开始加锁,下面是该方法的源代码:
protected final boolean compareAndSetState(int expect, int update) { return unsafe.compareAndSwapInt(this, stateOffset, expect, update); }
该方法以原子操作的方式更新state变量,本文把java的compareAndSet()方法调用简称为CAS。JDK文档对该方法的说明如下:如果当前状态值等于预期值,则以原子方式将同步状态设置为给定的更新值。此操作具有 volatile 读和写的内存语义。
这里我们分别从编译器和处理器的角度来分析,CAS如何同时具有volatile读和volatile写的内存语义。
前文我们提到过,编译器不会对volatile读与volatile读后面的任意内存操作重排序;编译器不会对volatile写与volatile写前面的任意内存操作重排序。组合这两个条件,意味着为了同时实现volatile读和volatile写的内存语义,编译器不能对CAS与CAS前面和后面的任意内存操作重排序。
下面我们来分析在常见的intel x86处理器中,CAS是如何同时具有volatile读和volatile写的内存语义的。
下面是sun.misc.Unsafe类的compareAndSwapInt()方法的源代码:
public final native boolean compareAndSwapInt(Object o, long offset, int expected, int x);
可以看到这是个本地方法调用。这个本地方法在openjdk中依次调用的c++代码为:unsafe.cpp,atomic.cpp和atomicwindowsx86.inline.hpp。这个本地方法的最终实现在openjdk的如下位置:openjdk-7-fcs-src-b147-27jun2011\openjdk\hotspot\src\oscpu\windowsx86\vm\ atomicwindowsx86.inline.hpp(对应于windows操作系统,X86处理器)。下面是对应于intel x86处理器的源代码的片段:
// Adding a lock prefix to an instruction on MP machine // VC++ doesn't like the lock prefix to be on a single line // so we can't insert a label after the lock prefix. // By emitting a lock prefix, we can define a label after it. #define LOCK_IF_MP(mp) __asm cmp mp, 0 \ __asm je L0 \ __asm _emit 0xF0 \ __asm L0: inline jint Atomic::cmpxchg (jint exchange_value, volatile jint* dest, jint compare_value) { // alternative for InterlockedCompareExchange int mp = os::is_MP(); __asm { mov edx, dest mov ecx, exchange_value mov eax, compare_value LOCK_IF_MP(mp) cmpxchg dword ptr [edx], ecx } }
如上面源代码所示,程序会根据当前处理器的类型来决定是否为cmpxchg指令添加lock前缀。如果程序是在多处理器上运行,就为cmpxchg指令加上lock前缀(lock cmpxchg)。反之,如果程序是在单处理器上运行,就省略lock前缀(单处理器自身会维护单处理器内的顺序一致性,不需要lock前缀提供的内存屏障效果)。
intel的手册对lock前缀的说明如下:
- 确保对内存的读-改-写操作原子执行。在Pentium及Pentium之前的处理器中,带有lock前缀的指令在执行期间会锁住总线,使得其他处理器暂时无法通过总线访问内存。很显然,这会带来昂贵的开销。从Pentium 4,Intel Xeon及P6处理器开始,intel在原有总线锁的基础上做了一个很有意义的优化:如果要访问的内存区域(area of memory)在lock前缀指令执行期间已经在处理器内部的缓存中被锁定(即包含该内存区域的缓存行当前处于独占或以修改状态),并且该内存区域被完全包含在单个缓存行(cache line)中,那么处理器将直接执行该指令。由于在指令执行期间该缓存行会一直被锁定,其它处理器无法读/写该指令要访问的内存区域,因此能保证指令执行的原子性。这个操作过程叫做缓存锁定(cache locking),缓存锁定将大大降低lock前缀指令的执行开销,但是当多处理器之间的竞争程度很高或者指令访问的内存地址未对齐时,仍然会锁住总线。
- 禁止该指令与之前和之后的读和写指令重排序。
- 把写缓冲区中的所有数据刷新到内存中。
上面的第2点和第3点所具有的内存屏障效果,足以同时实现volatile读和volatile写的内存语义。
经过上面的这些分析,现在我们终于能明白为什么JDK文档说CAS同时具有volatile读和volatile写的内存语义了。
现在对公平锁和非公平锁的内存语义做个总结:
- 公平锁和非公平锁释放时,最后都要写一个volatile变量state。
- 公平锁获取时,首先会去读这个volatile变量。
- 非公平锁获取时,首先会用CAS更新这个volatile变量,这个操作同时具有volatile读和volatile写的内存语义。
从本文对ReentrantLock的分析可以看出,锁释放-获取的内存语义的实现至少有下面两种方式:
- 利用volatile变量的写-读所具有的内存语义。
- 利用CAS所附带的volatile读和volatile写的内存语义。
concurrent包的实现
由于java的CAS同时具有 volatile 读和volatile写的内存语义,因此Java线程之间的通信现在有了下面四种方式:
- A线程写volatile变量,随后B线程读这个volatile变量。
- A线程写volatile变量,随后B线程用CAS更新这个volatile变量。
- A线程用CAS更新一个volatile变量,随后B线程用CAS更新这个volatile变量。
- A线程用CAS更新一个volatile变量,随后B线程读这个volatile变量。
Java的CAS会使用现代处理器上提供的高效机器级别原子指令,这些原子指令以原子方式对内存执行读-改-写操作,这是在多处理器中实现同步的关键(从本质上来说,能够支持原子性读-改-写指令的计算机器,是顺序计算图灵机的异步等价机器,因此任何现代的多处理器都会去支持某种能对内存执行原子性读-改-写操作的原子指令)。同时,volatile变量的读/写和CAS可以实现线程之间的通信。把这些特性整合在一起,就形成了整个concurrent包得以实现的基石。如果我们仔细分析concurrent包的源代码实现,会发现一个通用化的实现模式:
- 首先,声明共享变量为volatile;
- 然后,使用CAS的原子条件更新来实现线程之间的同步;
- 同时,配合以volatile的读/写和CAS所具有的volatile读和写的内存语义来实现线程之间的通信。
AQS,非阻塞数据结构和原子变量类(java.util.concurrent.atomic包中的类),这些concurrent包中的基础类都是使用这种模式来实现的,而concurrent包中的高层类又是依赖于这些基础类来实现的。从整体来看,concurrent包的实现示意图如下:
from:http://www.infoq.com/cn/articles/java-memory-model-5?utm_source=infoq&utm_medium=related_content_link&utm_campaign=relatedContent_articles_clk
相关推荐
本教程《深入理解JAVA内存模型》将带你深入探讨这一主题,尤其关注Java中的同步原语——synchronized、volatile和final。 首先,我们要了解JMM的基础结构。JMM规定了程序中各个线程如何访问和修改共享变量,包括主...
### JVM内存模型 #### 堆内存(Heap) 堆是JVM管理的最大块内存区域,用于存储对象实例。堆被划分为新生代和老年代,其中新生代又细分为Eden区和两个Survivor区(S0和S1)。对象首先在Eden区创建,经过几次GC后会被移动...
### Java内存模型(有助理解多线程) ...总结来说,深入理解Java内存模型对于编写高效的多线程程序非常重要。通过掌握JMM的基本原理,开发者不仅能够写出更健壮的代码,还能更好地应对并发环境下的挑战。
Java内存模型(JMM)是Java虚拟机(JVM)规范的一部分...理解Java内存模型对于编写高效、正确的多线程应用程序是非常关键的。通过了解JMM,开发者能够更好地管理线程间的共享变量,减少潜在的并发问题,优化程序性能。
Java虚拟机(JVM)是Java程序运行的基础,它提供了执行环境和各种内存区域,以支持Java代码的高效运行。本地方法栈是JVM的一部分,它主要负责处理与本地方法(通常是由C或C++编写)相关的调用。本地方法栈在Java线程...
《KJava深入浅出——Java在PDA上的程序设计》这本书是针对早期Java技术在掌上设备(PDA)应用的一本教程。虽然现在我们更多地谈论Android或iOS等现代移动平台,但在20世纪末至21世纪初,PDA(个人数字助手)是移动...
综上所述,深入理解Java内存模型中的三个代及其管理机制,对于优化Java应用程序的性能、避免内存泄漏等问题具有重要意义。通过合理设置JVM参数,开发者能够更好地适应不同场景的需求,提高系统的稳定性和响应速度。
同时,深入理解Java内存模型、垃圾回收机制、线程并发编程、异常处理、集合框架(List、Set、Map等)以及IO流等核心特性也至关重要。 Oracle是广泛使用的数据库系统,Java开发人员需要熟悉SQL语句的编写,包括...
这本书《Java 3D编程实践——网络上的三维动画》显然会深入探讨如何利用Java 3D来实现网络环境中的动态3D场景。 Java 3D API是基于Java Foundation Classes (JFC) 的一部分,它为开发者提供了构建三维图形应用的...
了解Java虚拟机的工作原理对于编写高效的Java程序至关重要,而Applet作为早期的Web交互技术,虽然已经过时,但它的概念和工作方式有助于理解Java在Web环境中的应用。随着技术的演进,开发者应关注更现代的技术和...
近期,在诚信通开源研究小组的专题学习分享会上,我们针对Java内存模型(JMM)进行了深入探讨,现将JMM相关的一些核心概念进行梳理,以便更好地理解和把握JMM的基本原理。 #### 第一问:JMM是干什么的? JMM (Java ...
首先,我们要理解Java内存模型的基础。Java内存主要分为堆内存(Heap)和栈内存(Stack)。堆内存用于存储对象实例,而栈内存则用于存储方法调用时的局部变量和方法参数。除此之外,还有方法区(Method Area)、程序...
1. **Java语言基础**:深入理解Java语法,包括数据类型、控制结构、类与对象、接口、包以及异常处理。这些基础知识是每个Java程序员必备的。 2. **面向对象编程**:Java是一种强类型、面向对象的语言,书中将详细...
1. **JVM架构解析**:书中可能详细介绍了JVM的内存模型,包括堆内存、栈内存、方法区、本地方法栈以及程序计数器等组成部分,帮助读者理解JVM如何管理和使用内存。 2. **垃圾收集机制**:JVM的垃圾收集是其性能的...
在深入理解Java虚拟机(JVM)如何加载Class文件之前,我们需要明确一点:Java的所有类都需要通过类加载器加载到JVM中才能被执行。这个过程对开发者来说通常是透明的,但在一些特殊情况下,例如使用反射时,了解类加载...
- **多线程并发**:深入理解Java多线程编程,包括线程生命周期、线程安全、线程间通信等,能灵活运用synchronized关键字、volatile变量、ReentrantLock等工具解决并发问题。 - **JVM原理**:熟悉JVM的工作原理,包括...
其次,深入理解Java内存管理是至关重要的。了解堆和栈的区别,以及如何管理对象生命周期。JVM(Java虚拟机)的工作原理,包括类加载机制、垃圾收集(GC)以及内存模型(JMM),都是面试中常见的主题。理解垃圾收集器...
Java面试题是每个Java开发者在求职过程中必须面对的挑战,涵盖范围广泛,从基础概念到高级特性和设计模式。这份终极列表包含115个Java面试题和...深入理解并熟练应用这些知识点,将大大提高你在Java面试中的竞争力。