Java分布式中文分词组件 - word分词
word分词是一个Java实现的分布式的中文分词组件,提供了多种基于词典的分词算法,并利用ngram模型来消除歧义。能准确识别英文、数字,以及日期、时间等数量词,能识别人名、地名、组织机构名等未登录词。能通过自定义配置文件来改变组件行为,能自定义用户词库、自动检测词库变化、支持大规模分布式环境,能灵活指定多种分词算法,能使用refine功能灵活控制分词结果,还能使用词性标注、同义标注、反义标注、拼音标注等功能。同时还无缝和Lucene、Solr、ElasticSearch、Luke集成。注意:word1.3需要JDK1.8
API在线文档:
编译好的jar包下载(包含依赖):
Maven依赖:
在pom.xml中指定dependency,可用版本有1.0、1.1、1.2:
<dependencies>
<dependency>
<groupId>org.apdplat</groupId>
<artifactId>word</artifactId>
<version>1.2</version>
</dependency>
</dependencies>
分词使用方法:
1、快速体验
运行项目根目录下的脚本demo-word.bat可以快速体验分词效果
用法: command [text] [input] [output]
命令command的可选值为:demo、text、file
demo
text 杨尚川是APDPlat应用级产品开发平台的作者
file d:/text.txt d:/word.txt
exit
2、对文本进行分词
移除停用词:List<Word> words = WordSegmenter.seg("杨尚川是APDPlat应用级产品开发平台的作者");
保留停用词:List<Word> words = WordSegmenter.segWithStopWords("杨尚川是APDPlat应用级产品开发平台的作者");
System.out.println(words);
输出:
移除停用词:[杨尚川, apdplat, 应用级, 产品, 开发平台, 作者]
保留停用词:[杨尚川, 是, apdplat, 应用级, 产品, 开发平台, 的, 作者]
3、对文件进行分词
String input = "d:/text.txt";
String output = "d:/word.txt";
移除停用词:WordSegmenter.seg(new File(input), new File(output));
保留停用词:WordSegmenter.segWithStopWords(new File(input), new File(output));
4、自定义配置文件
默认配置文件为类路径下的word.conf,打包在word-x.x.jar中
自定义配置文件为类路径下的word.local.conf,需要用户自己提供
如果自定义配置和默认配置相同,自定义配置会覆盖默认配置
配置文件编码为UTF-8
5、自定义用户词库
自定义用户词库为一个或多个文件夹或文件,可以使用绝对路径或相对路径
用户词库由多个词典文件组成,文件编码为UTF-8
词典文件的格式为文本文件,一行代表一个词
可以通过系统属性或配置文件的方式来指定路径,多个路径之间用逗号分隔开
类路径下的词典文件,需要在相对路径前加入前缀classpath:
指定方式有三种:
指定方式一,编程指定(高优先级):
WordConfTools.set("dic.path", "classpath:dic.txt,d:/custom_dic");
DictionaryFactory.reload();//更改词典路径之后,重新加载词典
指定方式二,Java虚拟机启动参数(中优先级):
java -Ddic.path=classpath:dic.txt,d:/custom_dic
指定方式三,配置文件指定(低优先级):
使用类路径下的文件word.local.conf来指定配置信息
dic.path=classpath:dic.txt,d:/custom_dic
如未指定,则默认使用类路径下的dic.txt词典文件
6、自定义停用词词库
使用方式和自定义用户词库类似,配置项为:
stopwords.path=classpath:stopwords.txt,d:/custom_stopwords_dic
7、自动检测词库变化
可以自动检测自定义用户词库和自定义停用词词库的变化
包含类路径下的文件和文件夹、非类路径下的绝对路径和相对路径
如:
classpath:dic.txt,classpath:custom_dic_dir,
d:/dic_more.txt,d:/DIC_DIR,D:/DIC2_DIR,my_dic_dir,my_dic_file.txt
classpath:stopwords.txt,classpath:custom_stopwords_dic_dir,
d:/stopwords_more.txt,d:/STOPWORDS_DIR,d:/STOPWORDS2_DIR,stopwords_dir,remove.txt
8、显式指定分词算法
对文本进行分词时,可显式指定特定的分词算法,如:
WordSegmenter.seg("APDPlat应用级产品开发平台", SegmentationAlgorithm.BidirectionalMaximumMatching);
SegmentationAlgorithm的可选类型为:
正向最大匹配算法:MaximumMatching
逆向最大匹配算法:ReverseMaximumMatching
正向最小匹配算法:MinimumMatching
逆向最小匹配算法:ReverseMinimumMatching
双向最大匹配算法:BidirectionalMaximumMatching
双向最小匹配算法:BidirectionalMinimumMatching
双向最大最小匹配算法:BidirectionalMaximumMinimumMatching
全切分算法:FullSegmentation
最少分词算法:MinimalWordCount
最大Ngram分值算法:MaxNgramScore
9、分词效果评估
运行项目根目录下的脚本evaluation.bat可以对分词效果进行评估
评估采用的测试文本有253 3709行,共2837 4490个字符
评估结果位于target/evaluation目录下:
corpus-text.txt为分好词的人工标注文本,词之间以空格分隔
test-text.txt为测试文本,是把corpus-text.txt以标点符号分隔为多行的结果
standard-text.txt为测试文本对应的人工标注文本,作为分词是否正确的标准
result-text-***.txt,***为各种分词算法名称,这是word分词结果
perfect-result-***.txt,***为各种分词算法名称,这是分词结果和人工标注标准完全一致的文本
wrong-result-***.txt,***为各种分词算法名称,这是分词结果和人工标注标准不一致的文本
10、分布式中文分词器
1、在自定义配置文件word.conf或word.local.conf中指定所有的配置项*.path使用HTTP资源,同时指定配置项redis.*
2、配置并启动提供HTTP资源的web服务器,将项目:https://github.com/ysc/word_web部署到tomcat
3、配置并启动redis服务器
11、词性标注(1.3才有这个功能)
将分词结果作为输入参数,调用PartOfSpeechTagging类的process方法,词性保存在Word类的partOfSpeech字段中
如下所示:
List<Word> words = WordSegmenter.segWithStopWords("我爱中国");
System.out.println("未标注词性:"+words);
//词性标注
PartOfSpeechTagging.process(words);
System.out.println("标注词性:"+words);
输出内容:
未标注词性:[我, 爱, 中国]
标注词性:[我/r, 爱/v, 中国/ns]
12、refine
我们看一个切分例子:
List<Word> words = WordSegmenter.segWithStopWords("我国工人阶级和广大劳动群众要更加紧密地团结在党中央周围");
System.out.println(words);
结果如下:
[我国, 工人阶级, 和, 广大, 劳动群众, 要, 更加, 紧密, 地, 团结, 在, 党中央, 周围]
假如我们想要的切分结果是:
[我国, 工人, 阶级, 和, 广大, 劳动, 群众, 要, 更加, 紧密, 地, 团结, 在, 党中央, 周围]
也就是要把“工人阶级”细分为“工人 阶级”,把“劳动群众”细分为“劳动 群众”,那么我们该怎么办呢?
我们可以通过在word.refine.path配置项指定的文件classpath:word_refine.txt中增加以下内容:
工人阶级=工人 阶级
劳动群众=劳动 群众
然后,我们对分词结果进行refine:
words = WordRefiner.refine(words);
System.out.println(words);
这样,就能达到我们想要的效果:
[我国, 工人, 阶级, 和, 广大, 劳动, 群众, 要, 更加, 紧密, 地, 团结, 在, 党中央, 周围]
我们再看一个切分例子:
List<Word> words = WordSegmenter.segWithStopWords("在实现“两个一百年”奋斗目标的伟大征程上再创新的业绩");
System.out.println(words);
结果如下:
[在, 实现, 两个, 一百年, 奋斗目标, 的, 伟大, 征程, 上, 再创, 新的, 业绩]
假如我们想要的切分结果是:
[在, 实现, 两个一百年, 奋斗目标, 的, 伟大征程, 上, 再创, 新的, 业绩]
也就是要把“两个 一百年”合并为“两个一百年”,把“伟大, 征程”合并为“伟大征程”,那么我们该怎么办呢?
我们可以通过在word.refine.path配置项指定的文件classpath:word_refine.txt中增加以下内容:
两个 一百年=两个一百年
伟大 征程=伟大征程
然后,我们对分词结果进行refine:
words = WordRefiner.refine(words);
System.out.println(words);
这样,就能达到我们想要的效果:
[在, 实现, 两个一百年, 奋斗目标, 的, 伟大征程, 上, 再创, 新的, 业绩]
13、同义标注
List<Word> words = WordSegmenter.segWithStopWords("楚离陌千方百计为无情找回记忆");
System.out.println(words);
结果如下:
[楚离陌, 千方百计, 为, 无情, 找回, 记忆]
做同义标注:
SynonymTagging.process(words);
System.out.println(words);
结果如下:
[楚离陌, 千方百计[久有存心, 化尽心血, 想方设法, 费尽心机], 为, 无情, 找回, 记忆[影象]]
如果启用间接同义词:
SynonymTagging.process(words, false);
System.out.println(words);
结果如下:
[楚离陌, 千方百计[久有存心, 化尽心血, 想方设法, 费尽心机], 为, 无情, 找回, 记忆[影像, 影象]]
List<Word> words = WordSegmenter.segWithStopWords("手劲大的老人往往更长寿");
System.out.println(words);
结果如下:
[手劲, 大, 的, 老人, 往往, 更, 长寿]
做同义标注:
SynonymTagging.process(words);
System.out.println(words);
结果如下:
[手劲, 大, 的, 老人[白叟], 往往[常常, 每每, 经常], 更, 长寿[长命, 龟龄]]
如果启用间接同义词:
SynonymTagging.process(words, false);
System.out.println(words);
结果如下:
[手劲, 大, 的, 老人[白叟], 往往[一样平常, 一般, 凡是, 寻常, 常常, 常日, 平凡, 平居, 平常, 平日, 平时, 往常, 日常, 日常平凡, 时常, 普通, 每每, 泛泛, 素日, 经常, 通俗, 通常], 更, 长寿[长命, 龟龄]]
以词“千方百计”为例:
可以通过Word的getSynonym()方法获取同义词如:
System.out.println(word.getSynonym());
结果如下:
[久有存心, 化尽心血, 想方设法, 费尽心机]
注意:如果没有同义词,则getSynonym()返回空集合:Collections.emptyList()
间接同义词和直接同义词的区别如下:
假设:
A和B是同义词,A和C是同义词,B和D是同义词,C和E是同义词
则:
对于A来说,A B C是直接同义词
对于B来说,A B D是直接同义词
对于C来说,A C E是直接同义词
对于A B C来说,A B C D E是间接同义词
14、反义标注
List<Word> words = WordSegmenter.segWithStopWords("5月初有哪些电影值得观看");
System.out.println(words);
结果如下:
[5, 月初, 有, 哪些, 电影, 值得, 观看]
做反义标注:
AntonymTagging.process(words);
System.out.println(words);
结果如下:
[5, 月初[月底, 月末, 月终], 有, 哪些, 电影, 值得, 观看]
List<Word> words = WordSegmenter.segWithStopWords("由于工作不到位、服务不完善导致顾客在用餐时发生不愉快的事情,餐厅方面应该向顾客作出真诚的道歉,而不是敷衍了事。");
System.out.println(words);
结果如下:
[由于, 工作, 不到位, 服务, 不完善, 导致, 顾客, 在, 用餐, 时, 发生, 不愉快, 的, 事情, 餐厅, 方面, 应该, 向, 顾客, 作出, 真诚, 的, 道歉, 而不是, 敷衍了事]
做反义标注:
AntonymTagging.process(words);
System.out.println(words);
结果如下:
[由于, 工作, 不到位, 服务, 不完善, 导致, 顾客, 在, 用餐, 时, 发生, 不愉快, 的, 事情, 餐厅, 方面, 应该, 向, 顾客, 作出, 真诚[糊弄, 虚伪, 虚假, 险诈], 的, 道歉, 而不是, 敷衍了事[一丝不苟, 兢兢业业, 尽心竭力, 竭尽全力, 精益求精, 诚心诚意]]
以词“月初”为例:
可以通过Word的getAntonym()方法获取反义词如:
System.out.println(word.getAntonym());
结果如下:
[月底, 月末, 月终]
注意:如果没有反义词,getAntonym()返回空集合:Collections.emptyList()
15、拼音标注
List<Word> words = WordSegmenter.segWithStopWords("《速度与激情7》的中国内地票房自4月12日上映以来,在短短两周内突破20亿人民币");
System.out.println(words);
结果如下:
[速度, 与, 激情, 7, 的, 中国, 内地, 票房, 自, 4月, 12日, 上映, 以来, 在, 短短, 两周, 内, 突破, 20亿, 人民币]
执行拼音标注:
PinyinTagging.process(words);
System.out.println(words);
结果如下:
[速度 sd sudu, 与 y yu, 激情 jq jiqing, 7, 的 d de, 中国 zg zhongguo, 内地 nd neidi, 票房 pf piaofang, 自 z zi, 4月, 12日, 上映 sy shangying, 以来 yl yilai, 在 z zai, 短短 dd duanduan, 两周 lz liangzhou, 内 n nei, 突破 tp tupo, 20亿, 人民币 rmb renminbi]
以词“速度”为例:
可以通过Word的getFullPinYin()方法获取完整拼音如:sudu
可以通过Word的getAcronymPinYin()方法获取首字母缩略拼音如:sd
16、Lucene插件:
1、构造一个word分析器ChineseWordAnalyzer
Analyzer analyzer = new ChineseWordAnalyzer();
如果需要使用特定的分词算法,可通过构造函数来指定:
Analyzer analyzer = new ChineseWordAnalyzer(SegmentationAlgorithm.FullSegmentation);
如不指定,默认使用双向最大匹配算法:SegmentationAlgorithm.BidirectionalMaximumMatching
可用的分词算法参见枚举类:SegmentationAlgorithm
2、利用word分析器切分文本
TokenStream tokenStream = analyzer.tokenStream("text", "杨尚川是APDPlat应用级产品开发平台的作者");
//准备消费
tokenStream.reset();
//开始消费
while(tokenStream.incrementToken()){
//词
CharTermAttribute charTermAttribute = tokenStream.getAttribute(CharTermAttribute.class);
//词在文本中的起始位置
OffsetAttribute offsetAttribute = tokenStream.getAttribute(OffsetAttribute.class);
//第几个词
PositionIncrementAttribute positionIncrementAttribute = tokenStream.getAttribute(PositionIncrementAttribute.class);
//词性
PartOfSpeechAttribute partOfSpeechAttribute = tokenStream.getAttribute(PartOfSpeechAttribute.class);
//首字母缩略拼音
AcronymPinyinAttribute acronymPinyinAttribute = tokenStream.getAttribute(AcronymPinyinAttribute.class);
//完整拼音
FullPinyinAttribute fullPinyinAttribute = tokenStream.getAttribute(FullPinyinAttribute.class);
//同义词
SynonymAttribute synonymAttribute = tokenStream.getAttribute(SynonymAttribute.class);
//反义词
AntonymAttribute antonymAttribute = tokenStream.getAttribute(AntonymAttribute.class);
LOGGER.info(charTermAttribute.toString()+" ("+offsetAttribute.startOffset()+" - "+offsetAttribute.endOffset()+") "+positionIncrementAttribute.getPositionIncrement());
LOGGER.info("PartOfSpeech:"+partOfSpeechAttribute.toString());
LOGGER.info("AcronymPinyin:"+acronymPinyinAttribute.toString());
LOGGER.info("FullPinyin:"+fullPinyinAttribute.toString());
LOGGER.info("Synonym:"+synonymAttribute.toString());
LOGGER.info("Antonym:"+antonymAttribute.toString());
}
//消费完毕
tokenStream.close();
3、利用word分析器建立Lucene索引
Directory directory = new RAMDirectory();
IndexWriterConfig config = new IndexWriterConfig(analyzer);
IndexWriter indexWriter = new IndexWriter(directory, config);
4、利用word分析器查询Lucene索引
QueryParser queryParser = new QueryParser("text", analyzer);
Query query = queryParser.parse("text:杨尚川");
TopDocs docs = indexSearcher.search(query, Integer.MAX_VALUE);
17、Solr插件:
1、下载word-1.3.jar
下载地址:http://search.maven.org/remotecontent?filepath=org/apdplat/word/1.3/word-1.3.jar
2、创建目录solr-5.1.0/example/solr/lib,将word-1.3.jar复制到lib目录
3、配置schema指定分词器
将solr-5.1.0/example/solr/collection1/conf/schema.xml文件中所有的
<tokenizer class="solr.WhitespaceTokenizerFactory"/>和
<tokenizer class="solr.StandardTokenizerFactory"/>全部替换为
<tokenizer class="org.apdplat.word.solr.ChineseWordTokenizerFactory"/>
并移除所有的filter标签
4、如果需要使用特定的分词算法:
<tokenizer class="org.apdplat.word.solr.ChineseWordTokenizerFactory" segAlgorithm="ReverseMinimumMatching"/>
segAlgorithm可选值有:
正向最大匹配算法:MaximumMatching
逆向最大匹配算法:ReverseMaximumMatching
正向最小匹配算法:MinimumMatching
逆向最小匹配算法:ReverseMinimumMatching
双向最大匹配算法:BidirectionalMaximumMatching
双向最小匹配算法:BidirectionalMinimumMatching
双向最大最小匹配算法:BidirectionalMaximumMinimumMatching
全切分算法:FullSegmentation
最少分词算法:MinimalWordCount
最大Ngram分值算法:MaxNgramScore
如不指定,默认使用双向最大匹配算法:BidirectionalMaximumMatching
5、如果需要指定特定的配置文件:
<tokenizer class="org.apdplat.word.solr.ChineseWordTokenizerFactory" segAlgorithm="ReverseMinimumMatching"
conf="solr-5.1.0/example/solr/nutch/conf/word.local.conf"/>
word.local.conf文件中可配置的内容见 word-1.3.jar 中的word.conf文件
如不指定,使用默认配置文件,位于 word-1.3.jar 中的word.conf文件
18、ElasticSearch插件:
1、打开命令行并切换到elasticsearch的bin目录
cd elasticsearch-1.5.1/bin
2、运行plugin脚本安装word分词插件:
./plugin -u http://apdplat.org/word/archive/v1.2.zip -i word
3、修改文件elasticsearch-1.5.1/config/elasticsearch.yml,新增如下配置:
index.analysis.analyzer.default.type : "word"
index.analysis.tokenizer.default.type : "word"
4、启动ElasticSearch测试效果,在Chrome浏览器中访问:
http://localhost:9200/_analyze?analyzer=word&text=杨尚川是APDPlat应用级产品开发平台的作者
5、自定义配置
修改配置文件elasticsearch-1.5.1/plugins/word/word.local.conf
6、指定分词算法
修改文件elasticsearch-1.5.1/config/elasticsearch.yml,新增如下配置:
index.analysis.analyzer.default.segAlgorithm : "ReverseMinimumMatching"
index.analysis.tokenizer.default.segAlgorithm : "ReverseMinimumMatching"
这里segAlgorithm可指定的值有:
正向最大匹配算法:MaximumMatching
逆向最大匹配算法:ReverseMaximumMatching
正向最小匹配算法:MinimumMatching
逆向最小匹配算法:ReverseMinimumMatching
双向最大匹配算法:BidirectionalMaximumMatching
双向最小匹配算法:BidirectionalMinimumMatching
双向最大最小匹配算法:BidirectionalMaximumMinimumMatching
全切分算法:FullSegmentation
最少分词算法:MinimalWordCount
最大Ngram分值算法:MaxNgramScore
如不指定,默认使用双向最大匹配算法:BidirectionalMaximumMatching
19、Luke插件:
1、下载http://luke.googlecode.com/files/lukeall-4.0.0-ALPHA.jar(国内不能访问)
2、下载并解压Java中文分词组件word-1.0-bin.zip:http://pan.baidu.com/s/1dDziDFz
3、将解压后的 Java中文分词组件word-1.0-bin/word-1.0 文件夹里面的4个jar包解压到当前文件夹
用压缩解压工具如winrar打开lukeall-4.0.0-ALPHA.jar,将当前文件夹里面除了META-INF文件夹、.jar、
.bat、.html、word.local.conf文件外的其他所有文件拖到lukeall-4.0.0-ALPHA.jar里面
4、执行命令 java -jar lukeall-4.0.0-ALPHA.jar 启动luke,在Search选项卡的Analysis里面
就可以选择 org.apdplat.word.lucene.ChineseWordAnalyzer 分词器了
5、在Plugins选项卡的Available analyzers found on the current classpath里面也可以选择
org.apdplat.word.lucene.ChineseWordAnalyzer 分词器
注意:如果你要自己集成word分词器的其他版本,在项目根目录下运行mvn install编译项目,然后运行命令
mvn dependency:copy-dependencies复制依赖的jar包,接着在target/dependency/目录下就会有所有
的依赖jar包。其中target/dependency/slf4j-api-1.6.4.jar是word分词器使用的日志框架,
target/dependency/logback-classic-0.9.28.jar和
target/dependency/logback-core-0.9.28.jar是word分词器推荐使用的日志实现,日志实现的配置文件
路径位于target/classes/logback.xml,target/word-1.3.jar是word分词器的主jar包,如果需要
自定义词典,则需要修改分词器配置文件target/classes/word.conf
已经集成好的Luke插件下载(适用于lucene4.0.0) :lukeall-4.0.0-ALPHA-with-word-1.0.jar
已经集成好的Luke插件下载(适用于lucene4.10.3):lukeall-4.10.3-with-word-1.2.jar
20、词向量:
从大规模语料中统计一个词的上下文相关词,并用这些上下文相关词组成的向量来表达这个词。
通过计算词向量的相似性,即可得到词的相似性。
相似性的假设是建立在如果两个词的上下文相关词越相似,那么这两个词就越相似这个前提下的。
通过运行项目根目录下的脚本demo-word-vector-corpus.bat来体验word项目自带语料库的效果
如果有自己的文本内容,可以使用脚本demo-word-vector-file.bat来对文本分词、建立词向量、计算相似性
分词算法效果评估:
1:word分词 全切分算法:
分词速度:74.09025 字符/毫秒
行数完美率:58.79% 行数错误率:41.2% 总的行数:2533709 完美行数:1489713 错误行数:1043996
字数完美率:49.53% 字数错误率:50.46% 总的字数:28374490 完美字数:14054431 错误字数:14320059
2:word分词 双向最大最小匹配算法:
分词速度:321.05466 字符/毫秒
行数完美率:55.31% 行数错误率:44.68% 总的行数:2533709 完美行数:1401582 错误行数:1132127
字数完美率:45.83% 字数错误率:54.16% 总的字数:28374490 完美字数:13005696 错误字数:15368794
3:word分词 双向最大匹配算法:
分词速度:505.47778 字符/毫秒
行数完美率:52.01% 行数错误率:47.98% 总的行数:2533709 完美行数:1317801 错误行数:1215908
字数完美率:42.42% 字数错误率:57.57% 总的字数:28374490 完美字数:12038414 错误字数:16336076
4:word分词 双向最小匹配算法:
分词速度:699.2235 字符/毫秒
行数完美率:46.76% 行数错误率:53.23% 总的行数:2533709 完美行数:1185013 错误行数:1348696
字数完美率:36.52% 字数错误率:63.47% 总的字数:28374490 完美字数:10365168 错误字数:18009322
5:word分词 逆向最大匹配算法:
分词速度:1161.7462 字符/毫秒
行数完美率:46.72% 行数错误率:53.27% 总的行数:2533709 完美行数:1183913 错误行数:1349796
字数完美率:36.67% 字数错误率:63.32% 总的字数:28374490 完美字数:10407342 错误字数:17967148
6:word分词 正向最大匹配算法:
分词速度:1212.7405 字符/毫秒
行数完美率:46.66% 行数错误率:53.33% 总的行数:2533709 完美行数:1182351 错误行数:1351358
字数完美率:36.73% 字数错误率:63.26% 总的字数:28374490 完美字数:10422209 错误字数:17952281
7:word分词 逆向最小匹配算法:
分词速度:2134.7043 字符/毫秒
行数完美率:41.78% 行数错误率:58.21% 总的行数:2533709 完美行数:1058606 错误行数:1475103
字数完美率:31.68% 字数错误率:68.31% 总的字数:28374490 完美字数:8989797 错误字数:19384693
8:word分词 正向最小匹配算法:
分词速度:2237.03 字符/毫秒
行数完美率:36.85% 行数错误率:63.14% 总的行数:2533709 完美行数:933769 错误行数:1599940
字数完美率:26.85% 字数错误率:73.14% 总的字数:28374490 完美字数:7621334 错误字数:20753156
相关文章:
相关项目:
Java开源项目cws_evaluation:中文分词器分词效果评估
相关推荐
Java分布式中文分词组件 - word分词 word分词是一个Java实现的分布式的中文分词组件,提供了多种基于词典的分词算法,并利用ngram模型来消除歧义。能准确识别英文、数字,以及日期、时间等数量词,能识别人名、地名...
###Java分布式中文分词组件 - word分词####word分词是一个Java实现的分布式的中文分词组件,提供了多种基于词典的分词算法,并利用ngram模型来消除歧义。能准确识别英文、数字,以及日期、时间等数量词,能识别人名...
本篇将详细探讨"storm-word-count-demo4.zip"这个项目,这是一个基于Storm的Java实现的Word Count示例,旨在帮助初学者理解如何在Storm框架下进行实时数据处理。 一、Spout组件 在Storm中,Spout是数据流的源头,...
"ik分词器" 是针对中文处理的重要组件,全称为 "Intelligent Chinese Analyzer"。Ik 分词器是为 Elasticsearch 设计的一款高效、灵活的中文分词工具,它可以将中文文本拆分成可索引的关键词,这对于提高中文搜索的...
- jieba分词:虽然主要用于中文,但也可以用于关键词提取,它是Java版的结巴分词,适合处理中文文本。 3. **自定义规则**: - 频率过滤:设置阈值,只保留出现次数超过该阈值的词语。 - 停用词过滤:去除常见的...
R-OSGi 是一套适用于任意满足 OSGi 架构的分布式通讯组件。它以 jar 的形式发布,部署容易,使用也较为便捷。 Java邮箱地址验证 jaev jaev 是一个用来验证电子邮箱地址是否有效的 Java 项目。 Java的FastCGI网关 ...
R-OSGi 是一套适用于任意满足 OSGi 架构的分布式通讯组件。它以 jar 的形式发布,部署容易,使用也较为便捷。 Java邮箱地址验证 jaev jaev 是一个用来验证电子邮箱地址是否有效的 Java 项目。 Java的FastCGI网关 ...
R-OSGi 是一套适用于任意满足 OSGi 架构的分布式通讯组件。它以 jar 的形式发布,部署容易,使用也较为便捷。 Java邮箱地址验证 jaev jaev 是一个用来验证电子邮箱地址是否有效的 Java 项目。 Java的FastCGI网关 ...
R-OSGi 是一套适用于任意满足 OSGi 架构的分布式通讯组件。它以 jar 的形式发布,部署容易,使用也较为便捷。 Java邮箱地址验证 jaev jaev 是一个用来验证电子邮箱地址是否有效的 Java 项目。 Java的FastCGI网关 ...
R-OSGi 是一套适用于任意满足 OSGi 架构的分布式通讯组件。它以 jar 的形式发布,部署容易,使用也较为便捷。 Java邮箱地址验证 jaev jaev 是一个用来验证电子邮箱地址是否有效的 Java 项目。 Java的FastCGI网关 ...
R-OSGi 是一套适用于任意满足 OSGi 架构的分布式通讯组件。它以 jar 的形式发布,部署容易,使用也较为便捷。 Java邮箱地址验证 jaev jaev 是一个用来验证电子邮箱地址是否有效的 Java 项目。 Java的FastCGI网关 ...
R-OSGi 是一套适用于任意满足 OSGi 架构的分布式通讯组件。它以 jar 的形式发布,部署容易,使用也较为便捷。 Java邮箱地址验证 jaev jaev 是一个用来验证电子邮箱地址是否有效的 Java 项目。 Java的FastCGI网关 ...
R-OSGi 是一套适用于任意满足 OSGi 架构的分布式通讯组件。它以 jar 的形式发布,部署容易,使用也较为便捷。 Java邮箱地址验证 jaev jaev 是一个用来验证电子邮箱地址是否有效的 Java 项目。 Java的FastCGI网关 ...
R-OSGi 是一套适用于任意满足 OSGi 架构的分布式通讯组件。它以 jar 的形式发布,部署容易,使用也较为便捷。 Java邮箱地址验证 jaev jaev 是一个用来验证电子邮箱地址是否有效的 Java 项目。 Java的FastCGI网关 ...
R-OSGi 是一套适用于任意满足 OSGi 架构的分布式通讯组件。它以 jar 的形式发布,部署容易,使用也较为便捷。 Java邮箱地址验证 jaev jaev 是一个用来验证电子邮箱地址是否有效的 Java 项目。 Java的FastCGI网关 ...
Elasticsearch-analysis-ik插件是Elasticsearch中的关键组件,尤其对于中文全文搜索来说。了解并熟练掌握IK分词器的配置和使用,能够显著提升中文文本检索的准确性和效率。同时,结合SpringData-elasticsearch,可以...
完成安装后,用户可以设置索引的分析器为"ik_max_word"或"ik_smart",前者用于全模式分词,后者则更注重效率。此外,IK分词器还支持动态热更新字典,使得无需重启服务就能更新分词规则。 总之,"elasticsearch-...
IK分词器(IK Analyzer)是针对中文的全文检索分析工具,设计目标是为Java开发人员提供一个快速、灵活且高效的中文分词组件。IK分词器支持多种分词模式,包括精确模式、全模式、关键词模式、搜索引擎模式等,能够...
R-OSGi 是一套适用于任意满足 OSGi 架构的分布式通讯组件。它以 jar 的形式发布,部署容易,使用也较为便捷。 Java邮箱地址验证 jaev jaev 是一个用来验证电子邮箱地址是否有效的 Java 项目。 Java的FastCGI网关 ...
R-OSGi 是一套适用于任意满足 OSGi 架构的分布式通讯组件。它以 jar 的形式发布,部署容易,使用也较为便捷。 Java邮箱地址验证 jaev jaev 是一个用来验证电子邮箱地址是否有效的 Java 项目。 Java的FastCGI网关 ...