第1章 概要说明4
1.1 Hadoop是什么?4
1.2 为什么选择CDH版本?4
1.3 集群配置环境4
1.4 网络结构图5
第2章 安装hadoop环境6
2.1 准备安装包6
2.2 默认用户组root:root6
2.3 卸载自带的jdk6
2.4 安装和配置jdk环境6
2.5 配置/etc/hosts6
2.6 配置ssh无密码登陆7
2.7 处理防火墙7
2.8 将hadoop-2.0.0-cdh4.2.0.zip上传到/opt,并解压缩9
2.9 编辑core-site.xml文件9
2.10 编辑hdfs-site.xml文件9
2.11 编辑slaves文件10
2.12 编辑mapred-site.xml文件10
2.13 编辑yarn-site.xml文件11
2.14 编辑.bashrc文件13
2.15 将master01机上的/opt/hadoop拷贝到其他机器上14
2.16 第一次启动hadoop需要先格式化NameNode14
2.17 在master01机上启动hdfs:14
2.18 在master01机上启动mapreduce,historyserver14
2.19 查看master01机的MapReduce15
2.20 查看slave01,slave02的节点15
2.21 检查各台机器的集群进程15
2.22 关闭服务15
第3章 Zookeeper安装16
3.1 准备安装包16
3.2 解压16
3.3 修改zoo.cfg文件16
3.4 修改环境变量17
3.5 创建data文件夹及修改myid文件17
3.6 将文件复制至其他机器17
3.7 启动18
3.8 检查是否成功18
3.9 停止服务18
3.10 参考文档18
第4章 Hive的安装19
4.1 准备安装包19
4.2 准备机器19
4.3 访问mysql19
4.4 配置hive-site.xml文件,将meta信息保存在mysql里19
4.5 将mysql-connector-java-5.1.18.tar.gz解压22
4.6 Mysql的一些操作22
4.7 查看日志记录22
4.8 Hive导入本地数据命令22
第5章 Hive+Thrift+PHP整合23
5.1 准备安装包23
5.2 编辑代码23
5.3 启动hiveserver24
5.4 查看默认开启的10000端口24
5.5 测试24
5.6 出错提示及解决办法24
第6章 sqoop安装使用25
6.1 准备安装包25
6.2 前提工作25
6.3 安装25
6.4 放置mysql驱动包25
6.5 修改configure-sqoop文件25
6.6 将路径加入PATH25
6.7 使用测试26
6.8 出错提示及解决办法27
6.9 参考27
第1章 概要说明
1.1 Hadoop是什么?
Hadoop一个分布式系统基础架构,由Apache基金会开发。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力高速运算和存储。Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS。HDFS有着高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上。而且它提供高传输率(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。HDFS放宽了(relax)POSIX的要求(requirements)这样可以流的形式访问(streaming access)文件系统中的数据。
1.2 为什么选择CDH版本?
Ø CDH基于稳定版Apache Hadoop,并应用了最新Bug修复或者Feature的Patch。Cloudera常年坚持季度发行Update版本,年度发行Release版本,更新速度比Apache官方快,而且在实际使用过程中CDH表现无比稳定,并没有引入新的问题。
Ø Cloudera官方网站上安装、升级文档详细,省去Google时间。
Ø CDH支持Yum/Apt包,Tar包,RPM包,Cloudera Manager四种方式安装
Ø 获取最新特性和最新Bug修复;安装维护方便,节省运维时间
1.3 集群配置环境
[root@master01 ~]# lsb_release -a
LSBVersion: :base-4.0-ia32:base-4.0-noarch:core-4.0-ia32:core-4.0-noarch:graphics-4.0-ia32:graphics-4.0-noarch:printing-4.0-ia32:printing-4.0-noarch
Distributor ID: CentOS
Description: CentOS release 6.4 (Final)
Release: 6.4
Codename: Final
1.4 网络结构图
第2章 安装hadoop环境
2.1 准备安装包
jdk-7-linux-i586.rpm [77.2M]
hadoop-2.0.0-cdh4.2.0 [129M] 此安装包URL下载:http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
2.2 默认用户组root:root
2.3 卸载自带的jdk
[root@master01 local]# rpm -qa | grep jdk
java-1.7.0-openjdk-1.7.0.9-2.3.4.1.el6_3.i686
yum -y remove java-1.7.0-openjdk-1.7.0.9-2.3.4.1.el6_3.i686
yum -y remove java-1.6.0-openjdk-1.6.0.0-1.50.1.11.5.el6_3.i686
2.4 安装和配置jdk环境
[root@master01 local]# rpm -ivh jdk-7-linux-i586.rpm
Preparing... ########################################### [100%]
1:jdk ########################################### [100%]
& 注意
下面有设置JAVA_HOME环境的清单,写在~/.bashrc.sh文件里
另外请注意:生产环境下一般为64位机,请下载相应的64位JDK包进行安装
2.5 配置/etc/hosts
vi /etc/hosts
192.168.2.18 master01
192.168.2.19 master02
192.168.2.163 slave01
192.168.2.38 slave02
192.168.2.212 slave03
& 注意:其他机器也要修改
rsync -vzrtopgu --progress /etc/hosts 192.168.2.38:/etc/hosts
2.6 配置ssh无密码登陆
ssh-keygen -t rsa
ssh-copy-id -i ~/.ssh/id_rsa.pub root@slave01
ssh-copy-id -i ~/.ssh/id_rsa.pub root@slave02
& 注意
Master01机本身也要设置一下哦!
cd ~
cat id_rsa.pub >>authorized_keys
2.7 处理防火墙
service iptables stop
& 说明
如果不关闭防火墙,让datanode通过namenode机的访问,请配置slave01,slave02等相关机器的iptables表,各台机器都要能互相访问
vi /etc/sysconfig/iptables
添加:
-I INPUT -s 192.168.2.18 -j ACCEPT
-I INPUT -s 192.168.2.38 -j ACCEPT
-I INPUT -s 192.168.2.87 -j ACCEPT
开启master01的8088和50070端口,方便WEB访问namenode和mapreduce
图1
图2
2.8 将hadoop-2.0.0-cdh4.2.0.zip上传到/opt,并解压缩
tar xzvf hadoop-2.0.0-cdh4.2.0.tar.gz
mv hadoop-2.0.0-cdh4.2.0 hadoop
cd hadoop/etc/hadoop/
2.9 编辑core-site.xml文件
vi core-site.xml
<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://master01</value>
</property>
<property>
<name>fs.trash.interval</name>
<value>10080</value>
</property>
<property>
<name>fs.trash.checkpoint.interval</name>
<value>10080</value>
</property>
</configuration>
2.10 编辑hdfs-site.xml文件
vi hdfs-site.xml
<configuration>
<property>
<name>dfs.replication</name>
<value>1</value>
</property>
<property>
<name>hadoop.tmp.dir</name>
<value>/opt/data/hadoop-${user.name}</value>
</property>
<property>
<name>dfs.namenode.http-address</name>
<value>master01:50070</value>
</property>
<property>
<name>dfs.secondary.http.address</name>
<value>master02:50090</value>
</property>
<property>
<name>dfs.webhdfs.enabled</name>
<value>true</value>
</property>
</configuration>
2.11 编辑slaves文件
vi slaves
slave01
slave02
2.12 编辑mapred-site.xml文件
cp mapred-site.xml.template mapred-site.xml
vi mapred-site.xml
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
<property>
<name>mapreduce.jobhistory.address</name>
<value>master01:10020</value>
</property>
<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>master01:19888</value>
</property>
</configuration>
2.13 编辑yarn-site.xml文件
<!--[if gte mso 9]><xml><w:WordDocument><w:BrowserLevel>MicrosoftInternetExplorer4</w:BrowserLevel><w:DisplayHorizontalDrawingGridEvery>0</w:DisplayHorizontalDrawingGridEvery><w:DisplayVerticalDrawingGridEvery>2</w:DisplayVerticalDrawingGridEvery><w:DocumentKind>DocumentNotSpecified</w:DocumentKind><w:DrawingGridVerticalSpacing>7.8</w:DrawingGridVerticalSpacing><w:View>Normal</w:View><w:Compatibility></w:Compatibility><w:Zoom>0</w:Zoom></w:WordDocument></xml><![endif]-->
vi yarn-site.xml
<configuration>
<!-- Site specific YARN configuration properties -->
<property>
<name>yarn.resourcemanager.resource-tracker.address</name>
<value>master01:8031</value>
</property>
<property>
<name>yarn.resourcemanager.address</name>
<value>master01:8032</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address</name>
<value>master01:8030</value>
</property>
<property>
<name>yarn.resourcemanager.admin.address</name>
<value>master01:8033</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address</name>
<value>master01:8088</value>
</property>
<property>
<description>Classpath for typical applications.</description>
<name>yarn.application.classpath</name>
<value>$HADOOP_CONF_DIR,$HADOOP_COMMON_HOME/share/hadoop/common/*,
$HADOOP_COMMON_HOME/share/hadoop/common/lib/*,
$HADOOP_HDFS_HOME/share/hadoop/hdfs/*,$HADOOP_HDFS_HOME/share/hadoop/hdfs/lib/*,
$YARN_HOME/share/hadoop/yarn/*,$YARN_HOME/share/hadoop/yarn/lib/*,
$YARN_HOME/share/hadoop/mapreduce/*,$YARN_HOME/share/hadoop/mapreduce/lib/*</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce.shuffle</value>
</property>
<property>
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
<property>
<name>yarn.nodemanager.local-dirs</name>
<value>/opt/data/yarn/local</value>
</property>
<property>
<name>yarn.nodemanager.log-dirs</name>
<value>/opt/data/yarn/logs</value>
</property>
<property>
<description>Where to aggregate logs</description>
<name>yarn.nodemanager.remote-app-log-dir</name>
<value>/opt/data/yarn/logs</value>
</property>
<property>
<name>yarn.app.mapreduce.am.staging-dir</name>
<value>/user</value>
</property>
</configuration>
1.1 编辑.bashrc文件
cd ~
vi .bashrc
#export LANG=zh_CN.utf8
export JAVA_HOME=/usr/java/jdk1.7.0
export JRE_HOME=$JAVA_HOME/jre
export CLASSPATH=./:$JAVA_HOME/lib:$JRE_HOME/lib:$JRE_HOME/lib/tools.jar
export HADOOP_HOME=/opt/hadoop
export HIVE_HOME=/opt/hive
export HBASE_HOME=/opt/hbase
export HADOOP_MAPRED_HOME=${HADOOP_HOME}
export HADOOP_COMMON_HOME=${HADOOP_HOME}
export HADOOP_HDFS_HOME=${HADOOP_HOME}
export YARN_HOME=${HADOOP_HOME}
export HADOOP_YARN_HOME=${HADOOP_HOME}
export HADOOP_CONF_DIR=${HADOOP_HOME}/etc/hadoop
export HDFS_CONF_DIR=${HADOOP_HOME}/etc/hadoop
export YARN_CONF_DIR=${HADOOP_HOME}/etc/hadoop
export PATH=$PATH:$HOME/bin:$JAVA_HOME/bin:$HADOOP_HOME/sbin:$HBASE_HOME/bin:$HIVE_HOME/bin
source .bashrc
1.2 将master01机上的/opt/hadoop拷贝到其他机器上
rsync -vzrtopgu --progress hadoop slave01:/opt/
rsync -vzrtopgu --progress hadoop slave02:/opt/
或者
rsync -vzrtopgu --progress hadoop 192.168.2.38:/opt/
rsync -vzrtopgu --progress hadoop 192.168.2.163:/opt/
& rsync命令参数解释
-v, --verbose 详细模式输出
-z, --compress 对备份的文件在传输时进行压缩处理
-r, --recursive 对子目录以递归模式处理
-t, --times 保持文件时间信息
-o, --owner 保持文件属主信息
-p, --perms 保持文件权限
-g, --group 保持文件属组信息
-u, --update 仅仅进行更新,也就是跳过所有已经存在于DST,并且文件时间晚于要备份的文件。(不覆盖更新的文件)
1.3 第一次启动hadoop需要先格式化NameNode
/opt/hadoop/bin/hadoop namenode -format
& 说明:
该操作只做一次。当修改了配置文件时,需要重新格式化
1.4 在master01机上启动hdfs:
/opt/hadoop/sbin/start-dfs.sh
1.5 在master01机上启动mapreduce,historyserver
/opt/hadoop/sbin/start-yarn.sh
/opt/hadoop/sbin/mr-jobhistory-daemon.sh start historyserver
1.6 查看master01机的MapReduce
http://192.168.2.18:8088/cluster
1.7 查看slave01,slave02的节点
http://192.168.2.163:8042/node/node
1.8 检查各台机器的集群进程
[root@master01 ~]# jps
5389 NameNode
5980 Jps
5710 ResourceManager
7032 JobHistoryServer
[root@slave01 ~]# jps
3187 Jps
3124 SecondaryNameNode
[root@slave02~]# jps
3187 Jps
3124 DataNode
5711 NodeManager
1.9 关闭服务
/opt/hadoop/sbin/stop-all.sh
第2章 Zookeeper安装
2.1 准备安装包
zookeeper-3.4.5-cdh4.2.0.tar.gz
2.2 解压
tar xzvf zookeeper-3.4.5-cdh4.2.0.tar.gz
mv zookeeper-3.4.5-cdh4.2.0 zookeeper
2.3 修改zoo.cfg文件
cd conf/
cp zoo_sample.cfg zoo.cfg
vi zoo.cfg
# The number of milliseconds of each tick
tickTime=2000
# The number of ticks that the initial
# synchronization phase can take
initLimit=10
# The number of ticks that can pass between
# sending a request and getting an acknowledgement
syncLimit=5
# the directory where the snapshot is stored.
# do not use /tmp for storage, /tmp here is just
# example sakes.
dataDir=/opt/zookeeper/data
#dataLogDir=/opt/zookeeper/log
# the port at which the clients will connect
clientPort=2181
#
# Be sure to read the maintenance section of the
# administrator guide before turning on autopurge.
#
# http://zookeeper.apache.org/doc/current/zookeeperAdmin.html#sc_maintenance
#
# The number of snapshots to retain in dataDir
#autopurge.snapRetainCount=3
# Purge task interval in hours
# Set to "0" to disable auto purge feature
#autopurge.purgeInterval=1
server.1=master01:2888:3888
server.2=master02:2888:3888
server.3=slave01:2888:3888
server.4=slave02:2888:3888
2.4 修改环境变量
vi ~/.bashrc
export ZOOKEEPER_HOME=/opt/zookeeper
export PATH=$PATH:$ZOOKEEPER_HOME/bin
2.5 创建data文件夹及修改myid文件
mkdir /opt/zookeeper/data
touch myid
vi myid
第一台机器写入数字1
第二台机器写入数字2
依此类推
2.6 将文件复制至其他机器
rsync -vzrtopgu --progress zookeeper master02:/opt/
rsync -vzrtopgu --progress zookeeper slave01:/opt/
rsync -vzrtopgu --progress zookeeper slave02:/opt/
2.7 启动
sh /opt/zookeeper/bin/zkServer.sh start
[root@master01 zookeeper]# jps
3459 JobHistoryServer
6259 Jps
2906 NameNode
3171 ResourceManager
6075 QuorumPeerMain
2.8 检查是否成功
/opt/zookeeper/bin/zkCli.sh -server master01:2181
或者
sh /opt/zookeeper/bin/zkServer.sh stop
2.9 停止服务
sh /opt/zookeeper/bin/zkServer.sh stop
2.10 参考文档
http://archive.cloudera.com/cdh4/cdh/4/zookeeper-3.4.5-cdh4.2.0/
第3章 Hive的安装
3.1 准备安装包
hive-0.10.0-cdh4.2.0 [43.2M]
mysql-connector-java-5.1.18.tar.gz [3.65M]
3.2 准备机器
slave03机器,安装hive+thrift+sqoop,专门作为数据分析用途。
3.3 访问mysql
和mysql整合前,请务必配置好各机器间能访问Mysql服务器机
GRANT select, insert, update, delete ON *.* TO 'hadoop'@'slave01' IDENTIFIED BY 'hadoop';
GRANT select, insert, update, delete ON *.* TO 'hadoop'@'slave01' IDENTIFIED BY 'hadoop';
GRANT select, insert, update, delete ON *.* TO 'hadoop'@'slave01' IDENTIFIED BY 'hadoop';
flush privileges;
show grants for 'hive'@'slave03';
revoke all on *.* from 'hadoop'@'slave01';
drop user 'hive'@'slave03';
& 说明
测试环境下,本人仍然用slave03机做mysql服务器。在实际生产环境中,建议用专门的机器做Mysql。
3.4 配置hive-site.xml文件,将meta信息保存在mysql里
cd /opt/hive
vi hive-site.xml
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>javax.jdo.option.ConnectionURL</name><value>jdbc:mysql://slave03:3306/hive?createDatabaseIfNotExist=true&characterEncoding=UTF-8</value>
<description>JDBC connect string for a JDBC metastore</description>
</property>
<property>
<name>javax.jdo.option.ConnectionDriverName</name>
<value>com.mysql.jdbc.Driver</value>
<description>Driver class name for a JDBC metastore</description>
</property>
<property>
<name>javax.jdo.option.ConnectionUserName</name>
<value>hadoop</value>
<description>username to use against metastore database</description>
</property>
<property>
<name>javax.jdo.option.ConnectionPassword</name>
<value>hadoop</value>
<description>password to use against metastore database</description>
</property>
<property>
<name>mapred.job.tracker</name>
<value>master01:8031</value>
</property>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
<property>
<name>hive.metastore.warehouse.dir</name>
<value>/opt/data/warehouse-${user.name}</value>
<description>location of default database for the warehouse</description>
</property>
<property>
<name>hive.exec.scratchdir</name>
<value>/opt/data/hive-${user.name}</value>
<description>Scratch space for Hive jobs</description>
</property>
<property>
<name>hive.querylog.location</name>
<value>/opt/data/querylog-${user.name}</value>
<description>
Location of Hive run time structured log file
</description>
</property>
<property>
<name>hive.support.concurrency</name>
<description>Enable Hive's Table Lock Manager Service</description>
<value>false</value>
</property>
<property>
<name>hive.hwi.listen.host</name>
<value>master01</value>
<description>This is the host address the Hive Web Interface will listen on</description>
</property>
<property>
<name>hive.hwi.listen.port</name>
<value>9999</value>
<description>This is the port the Hive Web Interface will listen on</description>
</property>
<property>
<name>hive.hwi.war.file</name>
<value>lib/hive-hwi-0.10.0-cdh4.2.0.war</value>
<description>This is the WAR file with the jsp content for Hive Web Interface</description>
</property>
</configuration>
3.5 将mysql-connector-java-5.1.18.tar.gz解压
tar xzvf mysql-connector-java-5.1.18.tar.gz
mv mysql-connector-java-5.1.18-bin.jar /opt/hive/lib
3.6 Mysql的一些操作
create database hive;
alter database hive character set latin1;
& 注意:
如果不设置上述命令,则会出现如下:
Specified key was too long; max key length is 767 bytes
3.7 查看日志记录
tail /tmp/root/hive.log
3.8 Hive导入本地数据命令
1) CREATE TABLE mytest2(num INT, name STRING) COMMENT 'only a test' ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' STORED AS TEXTFILE;
2) LOAD DATA LOCAL INPATH '/var/22.txt' INTO TABLE mytest2;
第4章 Hive+Thrift+PHP整合
4.1 准备安装包
Thrift.zip [71.7K] 下载URL:http://download.csdn.net/detail/jiedushi/3409880
PHP安装,略过
4.2 编辑代码
vi test.php
<?php
$GLOBALS['THRIFT_ROOT'] = '/home/wwwroot/Thrift/';
require_once $GLOBALS['THRIFT_ROOT'] . 'packages/hive_service/ThriftHive.php';
require_once $GLOBALS['THRIFT_ROOT'] . 'transport/TSocket.php';
require_once $GLOBALS['THRIFT_ROOT'] . 'protocol/TBinaryProtocol.php';
$transport = new TSocket('slave03', 10000);
$protocol = new TBinaryProtocol($transport);
$client = new ThriftHiveClient($protocol);
$transport->open();
#$client->execute('add jar /opt/hive/lib/hive-contrib-0.10.0-cdh4.2.0.jar ');
$client->execute("LOAD DATA LOCAL INPATH '/var/22.txt' INTO TABLE mytest2");
$client->execute("SELECT COUNT(1) FROM mytest2");
var_dump($client->fetchAll());
$transport->close();
?>
& 说明:
/var/22.txt文件内容为:
1 jj
2 kk
与上一章2.5的操作同步
4.3 启动hiveserver
/opt/hive/bin/hive --service hiveserver >/dev/null 2>/dev/null &
4.4 查看默认开启的10000端口
netstat -lntp|grep 10000
4.5 测试
php test.php
4.6 出错提示及解决办法
Ø Warning: stream_set_timeout(): supplied argument is not a valid stream resource in /home/wwwroot/Thrift/transport/TSocket.php on line 213
修改php.ini中的disable_functions
disable_functions = passthru,exec,system,chroot,scandir,chgrp,chown,shell_exec,proc_get_status,ini_alter,ini_alter,ini_restore,dl,openlog,syslog,readlink,symlink,popepassthru
第5章 sqoop安装使用
5.1 准备安装包
sqoop-1.4.2-cdh4.2.0.tar.gz [6M]
5.2 前提工作
按第一章的介绍步骤配置好hadoop,环境变量HADOOP_HOME已经设置好。
5.3 安装
cd /opt/
tar xzvf sqoop-1.4.2-cdh4.2.0.tar
mv sqoop-1.4.2-cdh4.2.0 sqoop
5.4 放置mysql驱动包
将mysql-connector-java-5.1.18-bin.jar包放至/opt/sqoop/lib下
5.5 修改configure-sqoop文件
vi /opt/sqoop/bin/configure-sqoop
因为没安装hbase,请注释
#if [ ! -d "${HBASE_HOME}" ]; then
# echo "Warning: $HBASE_HOME does not exist! HBase imports will fail."
# echo 'Please set $HBASE_HOME to the root of your HBase installation.'
#fi
5.6 将路径加入PATH
vi ~/.bashrc
export PATH=$PATH:$HOME/bin:$JAVA_HOME/bin:$HADOOP_HOME/sbin:$HBASE_HOME/bin:$HIVE_HOME/bin:$ANT_HOME/bin:/opt/sqoop/bin
5.7 使用测试
Ø 列出mysql数据库中的所有数据库命令
sqoop list-databases --connect jdbc:mysql://slave03:3306/ --username hadoop --password hadoop
Ø 列出表名:
sqoop list-tables -connect jdbc:mysql://slave03/ggg -username hadoop -password hadoop
Ø 将关系型数据的表结构复制到hive中
sqoop create-hive-table --connect jdbc:mysql://master01:3306/ggg --table hheccc_area --username hadoop --password hadoop --hive-table ggg_hheccc_area
Ø 从关系数据库导入文件到hive中
sqoop import -connect jdbc:mysql://slave03/ggg -username hadoop -password hadoop -table sp_log_fee -hive-import --hive-table hive_log_fee --split-by id -m 4
& 参照
一般导入:
import \
--append \
--connect $DS_BJ_HOTBACKUP_URL \
--username $DS_BJ_HOTBACKUP_USER \
--password $DS_BJ_HOTBACKUP_PWD \
--table 'seven_book_sync' \
--where "create_date >= '${par_31days}' and create_date < '${end_date}'" \
--hive-import \
--hive-drop-import-delims \
--hive-table ${hive_table} \ //可以点分法识别schema.table
--m 1
以时间作为增量条件是最好的办法
并行导入:
sqoop import --append --connect $CONNECTURL --username $ORACLENAME --password $ORACLEPASSWORD --target-dir $hdfsPath --m 12 --split-by CLIENTIP --table $oralceTableName --columns $columns --fields-terminated-by '\001' --where "data_desc='2011-02-26'"
增量导入:
sqoop import --connect jdbc:mysql://master01:3306/ggg --username hadoop --password hadoop --table hheccc_area --columns "id,name,reid,disorder" --direct --hive-import --hive-table hheccc_area --incremental append --check-column id --last-value 0
sqoop job --exec area_import
以上为网上找来的命令,经测试,不起作用。留着仅供参考。
Ø 将hive中的表数据导出到mysql中
sqoop export --connect jdbc:mysql://master01:3306/ggg --username hadoop --password hadoop --table mytest2 --export-dir /opt/data/warehouse-root/ggg_hheccc_area
& 备注
分区保存:/user/hive/warehouse/uv/dt=2011-08-03
5.8 出错提示及解决办法
Ø Encountered IOException running import job: org.apache.hadoop.fs.FileAlreadyExistsException: Output directory hdfs://master01/user/root/hheccc_area already exists
/opt/hadoop/bin/hadoop fs -rm -r /user/root/hheccc_area
5.9 参考
http://archive.cloudera.com/cdh/3/sqoop/SqoopUserGuide.html
http://sqoop.apache.org/docs/1.4.2/SqoopUserGuide.html
相关推荐
Cloudera CDH(Cloudera Distribution Including Apache Hadoop)是Cloudera公司提供的一款开源大数据平台,它包含了Hadoop生态系统中的多个组件,如HDFS、MapReduce、YARN、Hive、HBase等,为企业级大数据处理提供...
在本文中,我们将深入探讨如何在CentOS 6.2环境下安装Cloudera's Hadoop Distribution (CDH) 4.3版本。CDH是Cloudera公司提供的一款开源大数据处理平台,它集成了Hadoop生态系统中的多个组件,如Hadoop、Zookeeper和...
这里的“hadoop-2.6.0-cdh5.7.0版本”指的是Cloudera的Hadoop发行版,CDH(Cloudera Distribution Including Apache Hadoop)5.7.0中的Hadoop组件为2.6.0版本。这个版本包含了Hadoop生态系统中的多个关键组件,如...
【标题】"hadoop-cdh4-0.3.zip" 提供的是针对Presto优化的CDH4 Hadoop发行版,这个版本是专为Presto大数据查询引擎设计的,旨在提高其在CDH4(Cloudera Distribution Including Apache Hadoop)环境中的性能和兼容性...
Cloudera CDH搭建是企业级Hadoop发行版的安装过程,Cloudera CDH即Cloudera的Distribution包括Hadoop。CDH集成了多个Hadoop生态系统组件,包括但不限于HDFS、MapReduce、HBase、Hive、Oozie、Sqoop、ZooKeeper以及...
CDH4(Cloudera's Distribution Including Apache Hadoop)是Cloudera公司提供的一款基于Apache Hadoop的发行版,它集成了众多大数据处理组件,如HDFS、MapReduce、Hive、Pig、HBase等,为企业级大数据分析提供了...
### Hadoop之CDH:基于Cloudera的HA部署指南 #### 关于本指南 本文档旨在提供关于如何在Cloudera Distribution Including Hadoop (CDH)上配置高可用性的详细指南。CDH是由Cloudera公司提供的一个企业级Hadoop发行...
### 在Ubuntu 14.04 LTS下通过Cloudera CDH 5.4.8搭建Hadoop集群 #### 1. 前期准备工作 ##### 1.1 集群规划 为了构建一个高效的Hadoop集群,首先需要对硬件资源进行合理规划。根据文档中的描述,该集群共有8台...
hadoop-cdh-4.5.0 eclipse plugin hadoop eclipse 插件 hadoop-eclipse-plugin-2.0.0-cdh4.5.0.jar
cloudera CDH v5.16.2完整安装包,包含cm和parcel
hadoop eclipse插件 cdh3版本
为了便于系统管理员和Hadoop用户安装和管理Cloudera CDH,文档详细介绍了从机器规划到各组件的安装与配置过程。接下来,我将详细阐述这些知识点。 ### 第1章 系统概述 #### 1.1 机器规划 机器规划是实施Hadoop集群...
Cloudera CDH4 快速入门指南是为那些希望快速上手并熟悉Cloudera Distribution Including Apache Hadoop (CDH4)的用户而设计的。此文档提供了安装、配置以及运行CDH4的基本步骤,特别适用于那些初次接触Hadoop生态...
Centos 7安装配置Hadoop生态圈CDH5版本 其中包括hadoop hbase hive spark 等组件安装
CDH是Apache Hadoop和相关项目的最完整,经过测试的流行发行版。 CDH提供了Hadoop的核心元素 - 可扩展的存储和分布式计算 - 以及基于Web的用户界面和重要的企业功能。 CDH是Apache许可的开放源码,是唯一提供统一...
Hadoop平台 CDH 6.3.2 版本安装包
带编译所需的maven库,hadoop-2.6.0-cdh5.15.2在CentOS Linux release 7.3.1611重新编译的版本
在本主题中,我们将深入探讨如何使用Eclipse IDE(版本4.2,也称为Juno)来编译Hadoop 1.0.3项目。Eclipse是一款强大的Java开发工具,而Hadoop则是一个分布式计算框架,广泛应用于大数据处理。通过集成Eclipse的插件...
Cloudera Manager是一款基于大数据管理平台,用于管理Hadoop集群和CDH(Cloudera Distribution of Hadoop)集群。该手册详细介绍了Cloudera Manager的产品介绍、基本功能、监控功能等内容。 产品介绍 Cloudera ...
在IT领域,Hadoop是大数据处理的核心框架,而CDH(Cloudera Distribution Including Apache Hadoop)是由Cloudera公司提供的一个开源Hadoop发行版。CDH4.6.0是CDH系列的一个版本,它包含了对Hadoop、HBase、Hive和...