`
evans_he
  • 浏览: 12381 次
  • 性别: Icon_minigender_1
  • 来自: 深圳
社区版块
存档分类
最新评论

hadoop作业提交流程分析

阅读更多

       本篇博客将以WordCount为例从源码上分析hadoop作业提交流程,所使用的hadoop版本为cdh4.3.0。

       hadoop作业提交流程如下图所示:



 

public static void distribute() throws Exception {
  /*指定Hadoop 环境的用户名称,
    如果不指定会抛org.apache.hadoop.security.AccessControlException,访问受限*/
  System.setProperty("HADOOP_USER_NAME", "DQ");
  Configuration conf = new Configuration();
  //指定执行过程中临时文件存放目录
  conf.setStrings("hadoop.tmp.dir", "/home/DQ/hsh_test/");
  //指定jobTracker
  conf.set("mapred.job.tracker", "hadoop01:8021");
  //指定作业依赖的jar在本地的路径
  conf.set("tmpjars", "/home/david/workspace/haddop-test/thirdlib.jar");
  //指定mr jar包在本地的路径
  conf.set("mapred.jar", "/home/david/workspace/haddop-test/mr.jar");
  conf.setStrings("tmpfiles", "/home/david/workspace/haddop-test/refData/dict.txt");
  //指定依赖的归档文件
  conf.setStrings("tmparchives", "/home/david/workspace/haddop-test/refData/archives/archives.zip");
  //指定分片大小
  // long splip_size = 70 * 1024 * 1024;
  // conf.setLong("mapred.max.split.size", splip_size);
 
  Job wordCountjob = Job.getInstance(conf, "wordcount");
  wordCountjob.setNumReduceTasks(3); //配置reduec任务的数量
  wordCountjob.setInputFormatClass(TextInputFormat.class);
  wordCountjob.setMapperClass(TokenizerMapper.class);
  //指定对中间数据进行合并的类
  wordCountjob.setCombinerClass(IntSumReducer.class);
  wordCountjob.setReducerClass(IntSumReducer.class);
  wordCountjob.setOutputKeyClass(Text.class);
  wordCountjob.setOutputValueClass(IntWritable.class);
  // 指定输入数据在hdfs上的存放路径
  Path input1 = new Path("hdfs://hadoop01:8020/user/DQ/input1.txt");
  Path input2 = new Path("hdfs://hadoop01:8020/user/DQ/input2.txt");
  FileInputFormat.addInputPath(wordCountjob, input1);
  FileInputFormat.addInputPath(wordCountjob, input2);
 
  //作业执行结果在hdfs上的存放路径
  Path output = new Path("hdfs://hadoop01:8020/user/DQ/output/"+System.currentTimeMillis());
  FileOutputFormat.setOutputPath(wordCountjob, output);
  boolean flag = wordCountjob.waitForCompletion(true);
  if(flag)
   System.exit(1);
  System.exit(0);
 }

       

        客户端代码中,distribute( )方法创建Configuration 实例conf,并将 jobTracker信息、作业的mr jar包、作业依赖的jar以及依赖的其他文件添加到conf中,然后以conf为参数创建名为wordcount的作业实例wordCountJob,并指定其执行的Mapper和Reducer以及输入输出等信息。wordCountJob调用waitForCompletion(boolean verbose)提交作业,源码如下:

 

public boolean waitForCompletion(boolean verbose) throws IOException, InterruptedException,
       ClassNotFoundException {
    if (state == JobState.DEFINE) {
      submit();
    }
    if (verbose) { // 如果verbose为true 就打印作业执行信息,否则不打印
      jobClient.monitorAndPrintJob(conf, info);
    } else {
      info.waitForCompletion();
    }
    return isSuccessful();
  }

 

   waitForCompletion( )方法内部判定作业处于新建状态就调用Job的submit( )来提交。submit( )源码如下:

 

public void submit() throws IOException, InterruptedException,
       ClassNotFoundException {
    ensureState(JobState.DEFINE);
    setUseNewAPI();
   
    // Connect to the JobTracker and submit the job
    connect();
    info = jobClient.submitJobInternal(conf);
    super.setJobID(info.getID());
    state = JobState.RUNNING;
   }

       

        submit( )会进一步检查作业的状态是否是DEFINE,如果不是就终止提交。检查通过后调用connect( )与JobTracker建立连接,此过程会创建JobClient实例,重点在于实例的初始化方法init(JobConf conf)。

 

public void init(JobConf conf) throws IOException {
    setConf(conf);
    String tracker = conf.get("mapred.job.tracker", "local");
    tasklogtimeout = conf.getInt(
      TASKLOG_PULL_TIMEOUT_KEY, DEFAULT_TASKLOG_TIMEOUT);
    this.ugi = UserGroupInformation.getCurrentUser();
    if ("local".equals(tracker)) {
      conf.setNumMapTasks(1);
      this.jobSubmitClient = new LocalJobRunner(conf);
    } else if (!HAUtil.isHAEnabled(conf, tracker)) {
      this.jobSubmitClient = createRPCProxy(JobTracker.getAddress(conf), conf);
    } else {
      this.jobSubmitClient = createRPCProxy(tracker, conf);
    }

       

       JobClient的init方法中会根据配置的jobTracker来创建JobSubmissionProtocol实例jobSubmitClient,jobClient就是通过jobSubmitClient来向jobTracker提交作业的。如果用户没有配置mapred.job.tracker,其默认就为“local”,这种情况下会创建LocalJobRunner作为jobTracker,作业将会在本地而非分布式环境中执行。有关作业的本地执行,后续博客会详细介绍,本篇只介绍分布式执行。如果配置mapred.job.tracker为分布式环境中的jobTracker的地址,就创建jobTracker的rpc代理,由该代理来完成与jobTracker的交互。

 

       至此客户端提交代码所需要的实例都已创建完成(重点是jobClient实例和他的成员jobSubmitClient),下个阶段就是数据准备阶段。Job通过对jobClient调用submitJobInternal(conf)方法来真正完成作业的提交。

 

public RunningJob submitJobInternal(final JobConf job) throws FileNotFoundException,
                                        ClassNotFoundException, InterruptedException, IOException {
    return ugi.doAs(new PrivilegedExceptionAction<RunningJob>() {
      public RunningJob run() throws FileNotFoundException, ClassNotFoundException,InterruptedException,IOException{
        JobConf jobCopy = job;
        /*jobStagingArea是所有作业提交到JobTracker的文件系统中的根目录*/
        Path jobStagingArea = JobSubmissionFiles.getStagingDir(JobClient.this,jobCopy);
        JobID jobId = jobSubmitClient.getNewJobId();
        /*在JobTracker的文件系统上为当前提交的作业生成根目录(jobStagingArea/jobId/),该目录下存放的文件包括:
         *依赖的普通文件 存放目录:jobStagingArea/jobId/files
         *依赖的jar包 存放目录:jobStagingArea/jobId/libjars
         *依赖的归档文件 存放目录:jobStagingArea/jobId/archives
         *MR jar包 存放目录:jobStagingArea/jobId/
        */
        Path submitJobDir = new Path(jobStagingArea, jobId.toString());
        jobCopy.set("mapreduce.job.dir", submitJobDir.toString());
        JobStatus status = null;
        try {
          populateTokenCache(jobCopy, jobCopy.getCredentials());
          copyAndConfigureFiles(jobCopy, submitJobDir); //文件生成、上传
          // get delegation token for the dir
          TokenCache.obtainTokensForNamenodes(jobCopy.getCredentials(),new Path [] {submitJobDir},jobCopy);
   /* 作业配置文件job.xml文件在JobTracker的文件系统上的存放路径 */
          Path submitJobFile = JobSubmissionFiles.getJobConfPath(submitJobDir);
          /* 获取配置的reduceTask的数量,默认为1 */
          int reduces = jobCopy.getNumReduceTasks();
          InetAddress ip = InetAddress.getLocalHost();
          if (ip != null) {
            job.setJobSubmitHostAddress(ip.getHostAddress());
            job.setJobSubmitHostName(ip.getHostName());
          }
          JobContext context = new JobContextImpl(jobCopy, jobId);
          jobCopy = (JobConf)context.getConfiguration();
          // Check the output specification
          /* 通过OutputFormat检查作业输出目录是否有效 */
          if (reduces == 0 ? jobCopy.getUseNewMapper() :
            jobCopy.getUseNewReducer()) {
            org.apache.hadoop.mapreduce.OutputFormat<?,?> output =
              ReflectionUtils.newInstance(context.getOutputFormatClass(),jobCopy);
            output.checkOutputSpecs(context);
          } else {
            jobCopy.getOutputFormat().checkOutputSpecs(fs, jobCopy);
          }
          // Create the splits for the job
          FileSystem fs = submitJobDir.getFileSystem(jobCopy);
          LOG.debug("Creating splits at " + fs.makeQualified(submitJobDir));
          /* 对输入进行分片,并将分片信息和分片源信息上传到JobTracker的文件系统中的submitJobDir目录下,
           * 最后返回分片数作为MapTask的数量
            */
          int maps = writeSplits(context, submitJobDir);
          jobCopy.setNumMapTasks(maps);
          // write "queue admins of the queue to which job is being submitted" to job file.
          String queue = jobCopy.getQueueName();
          AccessControlList acl = jobSubmitClient.getQueueAdmins(queue);
          jobCopy.set(QueueManager.toFullPropertyName(queue,QueueACL.ADMINISTER_JOBS.getAclName()), acl.getAclString());
          /* 至此所有需要写到job.xml文件中的配置信息都已经写了,
            * 此处将最终配置文件上传到JobTracker的文件系统中
            */
          FSDataOutputStream out = FileSystem.create(fs, submitJobFile,
                new FsPermission(JobSubmissionFiles.JOB_FILE_PERMISSION));
          // removing jobtoken referrals before copying the jobconf to HDFS
          // as the tasks don't need this setting, actually they may break
          // because of it if present as the referral will point to a
          // different job.
          TokenCache.cleanUpTokenReferral(jobCopy);
          try {
            jobCopy.writeXml(out);
          } finally {
            out.close();
          }
          /*
           * 至此准备阶段完成,接下来由jobTracker代理通过RPC正式提交作业到集群
            */
          printTokens(jobId, jobCopy.getCredentials());
          status = jobSubmitClient.submitJob(jobId, submitJobDir.toString(), jobCopy.getCredentials());
          if (status != null) {
            return new NetworkedJob(status);
          } else {
            throw new IOException("Could not launch job");
          }
        } finally {
          if (status == null) {
            LOG.info("Cleaning up the staging area " + submitJobDir);
            if (fs != null && submitJobDir != null)
              fs.delete(submitJobDir, true);
          }
        }
      }
    });
  }

       

       本过程中,JobTracker的代理jobSubmitClient首先向jobTracker申请作业信息提交到jobTracker文件系统上的根目录和jobId,然后将作业依赖的各类文件(jar,普通文件、分档文件、job.xml等)提交到各自在jobTracker文件系统中的目录里面。依赖文件的处理在copyAndConfigureFiles (JobConf job, Path submitJobDir, short replication)中进行,源码如下:

 

private void copyAndConfigureFiles(JobConf job, Path submitJobDir, short replication) throws IOException, InterruptedException {
   
    if (!(job.getBoolean("mapred.used.genericoptionsparser", false))) {
      LOG.warn("Use GenericOptionsParser for parsing the arguments. " +
               "Applications should implement Tool for the same.");
    }
    String files = job.get("tmpfiles");
    String libjars = job.get("tmpjars");
    String archives = job.get("tmparchives");
    //
    // Figure out what fs the JobTracker is using. Copy the
    // job to it, under a temporary name. This allows DFS to work,
    // and under the local fs also provides UNIX-like object loading
    // semantics. (that is, if the job file is deleted right after
    // submission, we can still run the submission to completion)
    //
    // Create a number of filenames in the JobTracker's fs namespace
    FileSystem fs = submitJobDir.getFileSystem(job);
    LOG.debug("default FileSystem: " + fs.getUri());
    if (fs.exists(submitJobDir)) {
      throw new IOException("Not submitting job. Job directory " + submitJobDir
          +" already exists!! This is unexpected.Please check what's there in" +
          " that directory");
    }
    submitJobDir = fs.makeQualified(submitJobDir);
    FsPermission mapredSysPerms = new FsPermission(JobSubmissionFiles.JOB_DIR_PERMISSION);
    FileSystem.mkdirs(fs, submitJobDir, mapredSysPerms);
    Path filesDir = JobSubmissionFiles.getJobDistCacheFiles(submitJobDir);
    Path archivesDir = JobSubmissionFiles.getJobDistCacheArchives(submitJobDir);
    Path libjarsDir = JobSubmissionFiles.getJobDistCacheLibjars(submitJobDir);
    // add all the command line files/ jars and archive
    // first copy them to jobtrackers filesystem
    //在jobTracker的文件系统中为tmpfiles创建目录,从本地将文件上传到该目录,并将其放到分布式缓存中。
    if (files != null) {
      FileSystem.mkdirs(fs, filesDir, mapredSysPerms);
      String[] fileArr = files.split(",");
      for (String tmpFile: fileArr) {
        URI tmpURI;
        try {
          tmpURI = new URI(tmpFile);
        } catch (URISyntaxException e) {
          throw new IllegalArgumentException(e);
        }
        Path tmp = new Path(tmpURI);
        Path newPath = copyRemoteFiles(fs,filesDir, tmp, job, replication);
        try {
          URI pathURI = getPathURI(newPath, tmpURI.getFragment());
          DistributedCache.addCacheFile(pathURI, job);
        } catch(URISyntaxException ue) {
          //should not throw a uri exception
          throw new IOException("Failed to create uri for " + tmpFile, ue);
        }
        DistributedCache.createSymlink(job);
      }
    }
    //在jobTracker的文件系统中为作业依赖的jar包创建目录,从本地将jar上传到该目录,并将其放到分布式缓存中。
    if (libjars != null) {
      FileSystem.mkdirs(fs, libjarsDir, mapredSysPerms);
      String[] libjarsArr = libjars.split(",");
      for (String tmpjars: libjarsArr) {
        Path tmp = new Path(tmpjars);
        Path newPath = copyRemoteFiles(fs, libjarsDir, tmp, job, replication);
        DistributedCache.addFileToClassPath(
          new Path(newPath.toUri().getPath()), job, fs);
      }
    }
   
      //在jobTracker的文件系统中为作业依赖的归档文件创建目录,从本地将归档文件上传到该目录,并将其放到分布式缓存中。
    if (archives != null) {
     FileSystem.mkdirs(fs, archivesDir, mapredSysPerms);
     String[] archivesArr = archives.split(",");
     for (String tmpArchives: archivesArr) {
       URI tmpURI;
       try {
         tmpURI = new URI(tmpArchives);
       } catch (URISyntaxException e) {
         throw new IllegalArgumentException(e);
       }
       Path tmp = new Path(tmpURI);
       Path newPath = copyRemoteFiles(fs, archivesDir, tmp, job, replication);
       try {
         URI pathURI = getPathURI(newPath, tmpURI.getFragment());
         DistributedCache.addCacheArchive(pathURI, job);
       } catch(URISyntaxException ue) {
         //should not throw an uri excpetion
         throw new IOException("Failed to create uri for " + tmpArchives, ue);
       }
       DistributedCache.createSymlink(job);
     }
    }
   
    TrackerDistributedCacheManager.validate(job);
    TrackerDistributedCacheManager.determineTimestampsAndCacheVisibilities(job);
    TrackerDistributedCacheManager.getDelegationTokens(job, job.getCredentials());
  
   //将作业的mr jar包上传到jobTracker的文件系统中
    String originalJarPath = job.getJar();
    if (originalJarPath != null) { 
      if ("".equals(job.getJobName())){
        job.setJobName(new Path(originalJarPath).getName());
      }
      Path originalJarFile = new Path(originalJarPath);
      URI jobJarURI = originalJarFile.toUri();
      // If the job jar is already in fs, we don't need to copy it from local fs
      if (jobJarURI.getScheme() == null || jobJarURI.getAuthority() == null
              || !(jobJarURI.getScheme().equals(fs.getUri().getScheme())
                  && jobJarURI.getAuthority().equals(
                                            fs.getUri().getAuthority()))) {
        Path submitJarFile = JobSubmissionFiles.getJobJar(submitJobDir);
        job.setJar(submitJarFile.toString());
        fs.copyFromLocalFile(originalJarFile, submitJarFile);
        fs.setReplication(submitJarFile, replication);
        fs.setPermission(submitJarFile,
            new FsPermission(JobSubmissionFiles.JOB_FILE_PERMISSION));
      }
    } else {
      LOG.warn("No job jar file set. User classes may not be found. "+
               "See JobConf(Class) or JobConf#setJar(String).");
    }
  }

       

      该方法执行完之后,jobTracker文件系统中将添加如下文件:



       

       submitJobInternal( )方法在处理完以上文件之后会创建OutputFormat实例来验证输出路径是否合法,验证通过之后就开始处理输入数据分片。

       

       首先jobClient调用其方法writeNewSplits(JobContext job, Path jobSubmitDir) ,该方法通过反射创建InputFormat实例(这里使用的是FileInputFormat),然后用该实例创建分片,对分片排序之后会将分片信息写入文件上传到jobTracker的文件系统中,源码如下:

 

private <T extends InputSplit>
  int writeNewSplits(JobContext job, Path jobSubmitDir) throws IOException,
      InterruptedException, ClassNotFoundException {
    Configuration conf = job.getConfiguration();
    //通过反射创建InputFormat实例
    InputFormat<?, ?> input = ReflectionUtils.newInstance(job.getInputFormatClass(), conf);
    //InputFormat实例创建分片
    List<InputSplit> splits = input.getSplits(job);
    T[] array = (T[]) splits.toArray(new InputSplit[splits.size()]);
    //对分片按照大小降序排序,这样可以保证数据量大的分片现行被处理
    Arrays.sort(array, new SplitComparator());
    //将分片信息写入文件中
    JobSplitWriter.createSplitFiles(jobSubmitDir, conf, jobSubmitDir.getFileSystem(conf), array);
    //返回split数量作为mapTask的数量
    return array.length;
  }

 

    InputFormat实例创建好分片信息后,由JobSplitWriter负责写分片信息到文件中,源码如下:

 

public static <T extends InputSplit> void createSplitFiles(Path jobSubmitDir,
      Configuration conf, FileSystem fs, T[] splits)
  throws IOException, InterruptedException {
    //写分片源数据信息到文件job.spilt中并创建分片元数据信息
    FSDataOutputStream out = createFile(fs, JobSubmissionFiles.getJobSplitFile(jobSubmitDir), conf); 
    SplitMetaInfo[] info = writeNewSplits(conf, splits, out);
    out.close();
   //写分片元数据信息到文件job.splitmetainfo中
    writeJobSplitMetaInfo(fs,JobSubmissionFiles.getJobSplitMetaFile(jobSubmitDir),
        new FsPermission(JobSubmissionFiles.JOB_FILE_PERMISSION), splitVersion,
        info);
  }

       

     分片信息文件(job.split 和 job.splitmetainfo)会被上传到JobTracker的文件系统中,目录结构如下:



     

       job.split文件记录了每个分片的源数据信息:分片的数据结构(本例中就是FileSplit)和输入文件在hdfs上的逻辑位置。job.splitmetainfo文件记录了每个分片的元数据。两个文件的内容如下:



       

        最后作业需要的所有配置信息都已经配置到JobConf(jobCopy)中了,该配置对象包含的所有信息会被写到jobTracker文件系统中的job.xml文件中。

 

       到此所有数据准备完毕,jobSubmitClient调用submitJob( )方法将作业提交给jobTracker,作业提交完成,接下来作业的调度就交由jobTracker完成。

  • 大小: 76.1 KB
  • 大小: 101.6 KB
  • 大小: 60.5 KB
  • 大小: 17.4 KB
分享到:
评论

相关推荐

    hadoop提交作业分析.doc

    【Hadoop 作业提交流程详解】 在Hadoop生态系统中,提交一个MapReduce作业通常通过执行类似`bin/hadoop jar xxx.jar mainclass args`的命令来完成。这个过程看似简单,实际上涉及到了多个步骤和组件的交互。下面...

    如何使用eclipse调试Hadoop作业

    在IT行业中,尤其是在大数据处理领域,Hadoop...通过这些方法,你可以深入理解Hadoop作业的执行流程,找出并修复问题,提升作业的性能和稳定性。在实际操作中,不断实践和学习,你的Hadoop开发和调试技能将会日益精进。

    Hadoop源码分析 第一章 Hadoop脚本

    3. **MapReduce作业提交**:`hadoop jar`命令用于提交MapReduce作业,该命令指定包含主类的JAR文件和作业配置参数。 4. **数据分片与映射**:在Map阶段,Hadoop将输入数据分割成多个块,并在不同的节点上并行执行...

    大数据处理系统:Hadoop源代码情景分析_大数据_大数据分析_大数据Hadoop_

    `Job`类是提交任务的入口点,包含了任务配置和提交流程。`InputFormat`和`OutputFormat`定义了数据输入和输出的格式。`MapTask`和`ReduceTask`类则负责执行Map和Reduce任务,它们如何调度和执行是理解MapReduce工作...

    Hadoop运行流程详解

    Hadoop运行流程详解 Hadoop是一个开源分布式计算框架,核心由两个主要组件构成:HDFS(Hadoop Distributed File System)和MapReduce。...理解这一执行流程对于优化Hadoop作业性能和解决可能出现的问题至关重要。

    hadoop云计算平台作业调度算法的研究.ppt

    3. Hadoop作业调度流程包括作业提交、任务分配、任务执行、任务监控等步骤。 4. 推测执行任务是为了解决计算集群中的一些问题,例如资源分布不均、程序的错误或者是硬件的故障等。 5. 集群中的慢节点是指某些节点的...

    Linux提交hadoop任务

    6. **JobSubmitter**:`LinuxS.java`可能是一个JobSubmitter类,负责将Mapper和Reducer组合成一个完整的Hadoop作业,并提交到集群进行执行。JobSubmitter会设置作业参数,如输入输出路径、分区函数、排序规则等,...

    HADOOP大数据平台系统思路流程图.rar

    例如,可以创建RESTful API,让Web应用向Hadoop提交MapReduce作业,获取处理结果。 流程图中可能涵盖了以下步骤: 1. 数据采集:通过Web服务器日志、用户行为跟踪等方式收集数据。 2. 数据预处理:清洗、转换数据,...

    Hadoop源码分析

    在Map-Reduce作业提交的过程中,客户端会与ResourceManger交互,将作业分解为任务,并分配到各个Worker节点上的Container执行。 接着,我们深入到JobTracker(或ResourceManager)的工作流程。作业提交首先会创建一...

    【Yarn篇01】Yarn工作机制和作业提交流程1

    【Yarn工作机制和作业提交流程】是Hadoop生态系统中至关重要的一部分,它负责管理和调度分布式计算资源,确保高效地执行MapReduce等运算程序。Yarn,全称Yet Another Resource Negotiator,是一个资源调度平台,它的...

    hadoop源码分析

    本文将深入探讨Hadoop的核心组件,包括Configuration、JobClient、JobConf以及JobTracker、TaskTracker等,并详细解析Hadoop作业提交的流程。 首先,我们从Configuration类开始。Configuration类是Hadoop中的基础...

    Hadoop运行原理分析

    Hadoop作业调度由JobTracker和TaskTracker协同完成。JobTracker运行在master节点,负责整个作业的调度和管理,它会创建Job任务,并将这些任务分配给TaskTracker。TaskTracker运行在集群的每个节点上,负责执行具体的...

    基于Hadoop的ETL处理Shell架构

    例如,Bash Shell环境下的脚本可以使用grep、awk、sed等工具进行数据过滤、格式化和修改,或者调用Hadoop的命令行工具如hadoop fs、hadoop jar等进行数据的读写和MapReduce作业的提交。 具体来说,ETL流程可能包括...

    hadoop-eclipse-plugin-2.9.0.jar

    5. **日志查看**:在Eclipse中查看Hadoop作业的运行日志,便于问题定位和性能分析。 6. **版本兼容性**:Hadoop Eclipse Plugin 2.9.0适用于Hadoop 2.x系列,确保与较新版本的Hadoop集群良好兼容。 四、使用步骤 ...

    重庆理工大学hadoop第二次作业 作业:王唯.zip

    3. Hadoop配置:学习配置Hadoop环境,包括集群设置和作业提交。 4. 数据输入与输出:了解如何将数据输入Hadoop系统以及处理后的结果输出。 5. 错误处理和容错性:理解Hadoop的容错机制,如何处理节点故障等问题。 6....

    hadoop-eclipse-plugin-2.6.0.jar.zip_2.6.0_hadoop_hadoop plugin

    3. **作业提交**:开发者可以直接在Eclipse中编译、打包和提交MapReduce作业到Hadoop集群,无需手动执行命令行操作,极大地简化了开发流程。 4. **调试支持**:插件提供了强大的调试功能,可以在本地模拟运行...

    远程调用执行Hadoop Map/Reduce

    7. **工具集成**:有许多开源工具可以帮助我们远程提交和管理Hadoop作业,如Hadoop命令行工具、Hadoop的Web UI、Apache Oozie工作流管理系统等。这些工具提供了方便的接口,使开发者能便捷地与集群交互。 8. **安全...

    【Hadoop项目】全国各省市酒店数据的分析与处理

    5. 部署和运行:在大规模Hadoop集群上提交作业,处理整个数据集。 6. 结果分析:收集MapReduce输出,可能需要进一步的数据可视化或业务逻辑处理,以生成易于理解的报告。 通过对全国各省市酒店数据的分析与处理,...

    Hadoop课程的课程作业,包含所需资源等

    二、Hadoop作业流程 Hadoop作业通常包括以下步骤: 1. 数据上传:用户将数据文件上传到HDFS。 2. 作业提交:提交MapReduce程序到JobTracker(Hadoop 1.x中的角色,Hadoop 2.x中由YARN的ResourceManager替代)。 3. ...

    Hadoop.MapReduce.分析

    ### Hadoop.MapReduce 分析 #### 一、概述 Hadoop.MapReduce 是一种分布式计算模型,主要用于处理大规模数据集。其基本思想源自Google提出的MapReduce论文。本文将深入解析Hadoop.MapReduce的工作原理、核心组件...

Global site tag (gtag.js) - Google Analytics