`

hbase coprocessor入门使用 转

阅读更多

转:http://www.360doc.com/content/14/0402/17/16635465_365774770.shtml

1.起因(Why HBase  Coprocessor)

HBase作为列族数据库最经常被人诟病的特性包括:无法轻易建立“二级索引”,难以执行求和、计数、排序等操作。比如,在旧版本的(<0.92)Hbase中,统计数据表的总行数,需要使用Counter方法,执行一次MapReduce Job才能得到。虽然HBase在数据存储层中集成了MapReduce,能够有效用于数据表的分布式计算。然而在很多情况下,做一些简单的相加或者聚合计算的时候,如果直接将计算过程放置在server端,能够减少通讯开销,从而获得很好的性能提升。于是,HBase在0.92之后引入了协处理器(coprocessors),实现一些激动人心的新特性:能够轻易建立二次索引、复杂过滤器(谓词下推)以及访问控制等。

2.灵感来源( Source of Inspration)

HBase协处理器的灵感来自于Jeff Dean 09年的演讲( P66-67)。它根据该演讲实现了类似于bigtable的协处理器,包括以下特性:

  • 每个表服务器的任意子表都可以运行代码
  • 客户端的高层调用接口(客户端能够直接访问数据表的行地址,多行读写会自动分片成多个并行的RPC调用)
  • 提供一个非常灵活的、可用于建立分布式服务的数据模型
  • 能够自动化扩展、负载均衡、应用请求路由
HBase的协处理器灵感来自bigtable,但是实现细节不尽相同。HBase建立了一个框架,它为用户提供类库和运行时环境,使得他们的代码能够在HBase region server和master上处理。

3.细节剖析(Implementation)

协处理器分两种类型,系统协处理器可以全局导入region server上的所有数据表,表协处理器即是用户可以指定一张表使用协处理器。协处理器框架为了更好支持其行为的灵活性,提供了两个不同方面的插件。一个是观察者(observer),类似于关系数据库的触发器。另一个是终端(endpoint),动态的终端有点像存储过程。

 3.1观察者(Observer)

观察者的设计意图是允许用户通过插入代码来重载协处理器框架的upcall方法,而具体的事件触发的callback方法由HBase的核心代码来执行。协处理器框架处理所有的callback调用细节,协处理器自身只需要插入添加或者改变的功能。

以HBase0.92版本为例,它提供了三种观察者接口:

  • RegionObserver:提供客户端的数据操纵事件钩子:Get、Put、Delete、Scan等。
  • WALObserver:提供WAL相关操作钩子。
  • MasterObserver:提供DDL-类型的操作钩子。如创建、删除、修改数据表等。

这些接口可以同时使用在同一个地方,按照不同优先级顺序执行.用户可以任意基于协处理器实现复杂的HBase功能层。HBase有很多种事件可以触发观察者方法,这些事件与方法从HBase0.92版本起,都会集成在HBase API中。不过这些API可能会由于各种原因有所改动,不同版本的接口改动比较大,具体参考Java Doc

RegionObserver工作原理,如图1所示。更多关于Observer细节请参见HBaseBook的第9.6.3章节

regionobserver.png

图1 RegionObserver工作原理

 

3.2终端(Endpoint)

终端是动态RPC插件的接口,它的实现代码被安装在服务器端,从而能够通过HBase RPC唤醒。客户端类库提供了非常方便的方法来调用这些动态接口,它们可以在任意时候调用一个终端,它们的实现代码会被目标region远程执行,结果会返回到终端。用户可以结合使用这些强大的插件接口,为HBase添加全新的特性。终端的使用,如下面流程所示:

  1. 定义一个新的protocol接口,必须继承CoprocessorProtocol.
  2. 实现终端接口,该实现会被导入region环境执行。
  3. 继承抽象类BaseEndpointCoprocessor.
  4. 在客户端,终端可以被两个新的HBase Client API调用 。单个region:HTableInterface.coprocessorProxy(Class<T> protocol, byte[] row) 。rigons区域:HTableInterface.coprocessorExec(Class<T> protocol, byte[] startKey, byte[] endKey, Batch.Call<T,R> callable)

整体的终端调用过程范例,如图2所示:

rpc.png

图2 终端调用过程范例

4.编程实践(Code Example)

在该实例中,我们通过计算HBase表中行数的一个实例,来真实感受协处理器 的方便和强大。在旧版的HBase我们需要编写MapReduce代码来汇总数据表中的行数,在0.92以上的版本HBase中,只需要编写客户端的代码即可实现,非常适合用在WebService的封装上。

4.1启用协处理器 Aggregation(Enable Coprocessor Aggregation)

我们有两个方法:1.启动全局aggregation,能过操纵所有的表上的数据。通过修改hbase-site.xml这个文件来实现,只需要添加如下代码:

<property>
   <name>hbase.coprocessor.user.region.classes</name>
   <value>org.apache.hadoop.hbase.coprocessor.AggregateImplementation</value>
 </property>

2.启用表aggregation,只对特定的表生效。通过HBase Shell 来实现。

(1)disable指定表。hbase> disable 'mytable'

(2)添加aggregation hbase> alter 'mytable', METHOD => 'table_att','coprocessor'=>'|org.apache.hadoop.hbase.coprocessor.AggregateImplementation||'

(3)重启指定表 hbase> enable 'mytable'

4.2统计行数代码(Code Snippet)

复制代码
public class MyAggregationClient { 

private static final byte[] TABLE_NAME = Bytes.toBytes("mytable");
private static final byte[] CF = Bytes.toBytes("vent");
public static void main(String[] args) throws Throwable {
Configuration customConf = new Configuration();
customConf.setStrings("hbase.zookeeper.quorum",
"node0,node1,node2");
//提高RPC通信时长
customConf.setLong("hbase.rpc.timeout", 600000);
//设置Scan缓存
customConf.setLong("hbase.client.scanner.caching", 1000);
Configuration configuration = HBaseConfiguration.create(customConf);
AggregationClient aggregationClient = new AggregationClient(
configuration);
Scan scan = new Scan();
//指定扫描列族,唯一值
scan.addFamily(CF);
long rowCount = aggregationClient.rowCount(TABLE_NAME, null, scan);
System.out.println("row count is " + rowCount);

}
}
复制代码

 

 
 
以下是关于Observer程序示例的补充:

4.编程实践(Code Example)

4.3 RegionObserverExample (此例来自《HBase: The Definitive Guide》)
//新实现的类须继承BaseRegionObserver类
package hbaseCoprocessor;
 
import java.io.IOException;  
import java.util.List;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.KeyValue;  
import org.apache.hadoop.hbase.client.Get;  
import org.apache.hadoop.hbase.client.HTable;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.coprocessor.BaseRegionObserver;  
import org.apache.hadoop.hbase.coprocessor.ObserverContext;  
import org.apache.hadoop.hbase.coprocessor.RegionCoprocessorEnvironment;  
import org.apache.hadoop.hbase.util.Bytes;  
  
public class RegionObserverExample extends  
    BaseRegionObserver {  
      
    public static final byte[] FIXED_ROW =  
            Bytes.toBytes("@@@GETTIME@@@");
    public static String tablename = "table";
    public static String rowkey = "rowkey";
    @Override  
    public void preGet(  
            final ObserverContext<RegionCoprocessorEnvironment> e,  
            final Get get, final List<KeyValue> results) throws  
            IOException {  
                //if (Bytes.equals(get.getRow(), FIXED_ROW)) {   //书中原来的功能是如果查询的row为FIXED_ROW时,在结果返回系统时间
                    KeyValue kv = new KeyValue(get.getRow(), FIXED_ROW,  
                            FIXED_ROW,  
                            Bytes.toBytes(System.currentTimeMillis()));  
                    results.add(kv);  
                //}  
    }  
  public static void selectRow(String tablename, String rowKey)
    throws IOException {
      Configuration config = HBaseConfiguration.create();
      HTable table =new HTable(config, tablename);
      Get g =new Get(rowKey.getBytes());
      Result rs = table.get(g);
      for (KeyValue kv : rs.raw()) {
        System.out.print(new String(kv.getRow()) +" ");
        System.out.print(new String(kv.getFamily()) +":");
        System.out.print(new String(kv.getQualifier()) +" ");
        System.out.println(new String(kv.getValue()));
      }
      table.close();
  }
  public static void main(String args[]){  
    try {
      selectRow( tablename, rowkey);
    } catch (IOException e) {
      e.printStackTrace();
    }
    System.out.println("sucess!");  
  }    
}  
1.编译通过后,将该类打包成jar文件(如test.jar),并copy到各regionserver的安装目录下,
2 利用shell命令加载此coprocessor到特定表上: alter 't1', METHOD => 'table_att', 'coprocessor'=>'test.jar|hbaseCoprocessor.RegionObserverExample|1001|'.
3 然后在客户端执行上面的程序,即可得到预期结果。
4 一个疑问,根据参考资料中说明,可以将jar文件上传到hdfs中(命令如下),再加载到表上,但我并没有成功。
 alter 't1', METHOD => 'table_att', 'coprocessor'=>'hdfs:///test.jar|hbaseCoprocessor.RegionObserverExample|1001|'.
ps:经过尝试,可以将路径写完整,即:
alter 't1', METHOD => 'table_att', 'coprocessor'=>'hdfs://nnip:9000/test.jar|hbaseCoprocessor.RegionObserverExample|1001|'.
根据自己NN的配置,将上面的nnip修改即可正确运行cp.
5 删除一个coprocessor的shell命令:alter 't1', METHOD => 'table_att_unset',NAME => 'coprocessor$1'
 
参考资料:
HBase: The Definitive Guide
分享到:
评论

相关推荐

    HBase海量数据存储实战视频教程

    第一章 HBase入门 1. 简介 2. 集群搭建 3. HBase数据模型 4. 常用shell操作 5. shell管理操作 6. Hbase Java编程 7. HBase高可用 8. HBase架构 第二章 陌陌海量存储案例 1. 案例介绍 2. 打招呼消息数据集介绍 3. ...

    nosql 入门教程

    16.6 HBase Coprocessor 262 16.7 布隆过滤器 262 16.8 小结 262 第17章 工具和实用程序 263 17.1 RRDTool 263 17.2 Nagios 265 17.3 Scribe 266 17.4 Flume 267 17.5 Chukwa 267 17.6 Pig 268 17.6.1 ...

    大数据方向学习课程体系

    - 了解HBase协处理器(Coprocessor)的概念及其应用场景。 - 学习如何实现二级索引来提高查询性能。 4. **过滤器查询** - 学习使用Filter进行复杂的查询操作。 - 掌握不同类型的过滤器及其用法。 5. **Hbase内部...

    数据集-苹果果目标检测-labelme-4430

    包含4430张苹果目标检测图片和标签数据。 数据集介绍: https://blog.csdn.net/qq_21386397/article/details/147465394

    基于YOLOv5和Django实现了对道路交通标识的实时识别系统+项目说明(毕设作品).zip

    基于YOLOv5和Django实现了对道路交通标识的实时识别系统+项目说明(毕设作品).zip 项目简介 该项目基于YOLOv5和Django实现了对道路交通标识的实时识别并利用Django后端框架部署该项目,用户可以在网页上实时观看检测画面。 项目组成 detect文件夹 Django APP 主要是识别的代码、模型、以及相关的资源 主要功能点 基于YOLOv5的道路交通标识实时识别 利用Django后端框架部署项目,提供网页界面供用户实时观看检测结果 技术栈 计算机视觉: YOLOv5 Web框架: Django

    NetworkWordCount.py

    NetworkWordCount.py

    groovy-2.4.0-beta-3.jar中文文档.zip

    # 压缩文件中包含: 中文文档 jar包下载地址 Maven依赖 Gradle依赖 源代码下载地址 # 本文件关键字: jar中文文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件;

    groovy-2.3.0-beta-2.jar中文文档.zip

    # 压缩文件中包含: 中文文档 jar包下载地址 Maven依赖 Gradle依赖 源代码下载地址 # 本文件关键字: jar中文文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件;

    Python新手入门学习方法指南.pdf

    内容概要:本文档为Python新手提供了全面的学习指南,涵盖从零基础到独立编程所需的知识和技能。首先介绍了Python的核心优势和应用场景,强调其简洁的语法、丰富的生态以及跨平台支持。接着详细规划了四个学习阶段:基础语法(1-2周),包括变量、数据类型、流程控制等;数据结构与文件操作(2-3周),涉及列表、字典、文件读写;面向对象与模块化编程(3-4周),讲解类与对象、继承、模块化开发;实战项目(持续练习),通过具体项目巩固所学知识。此外,还提供了开发环境搭建指导、高效学习技巧、常见问题避坑指南及学习资源推荐,帮助初学者顺利入门。 适合人群:零基础或有少量编程经验,希望系统学习Python的新手程序员。 使用场景及目标:①为初学者提供系统的Python学习路径,从基础到实战逐步提升编程能力;②帮助学习者掌握Python核心语法和常用工具,能够独立完成小型项目;③通过实战项目积累经验,培养解决实际问题的能力。 其他说明:建议学习者按照规划的学习路径循序渐进,每天坚持练习,并积极参与社区交流。遇到问题时,善用官方文档和在线资源,保持学习动力,逐步成长为自信的开发者。

    flink-table-api-java-1.14.1.jar中文-英文对照文档.zip

    # 压缩文件中包含: 中文-英文对照文档 jar包下载地址 Maven依赖 Gradle依赖 源代码下载地址 # 本文件关键字: jar中文-英文对照文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件;

    Python 实现的爬取汽车之家数据并进行可视化展示项目源代码+全部数据

    Python 实现的爬取汽车之家数据并进行可视化展示项目源代码+全部数据,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 Python 实现的爬取汽车之家数据并进行可视化展示项目源代码+全部数据Python 实现的爬取汽车之家数据并进行可视化展示项目源代码+全部数据Python 实现的爬取汽车之家数据并进行可视化展示项目源代码+全部数据Python 实现的爬取汽车之家数据并进行可视化展示项目源代码+全部数据Python 实现的爬取汽车之家数据并进行可视化展示项目源代码+全部数据Python 实现的爬取汽车之家数据并进行可视化展示项目源代码+全部数据Python 实现的爬取汽车之家数据并进行可视化展示项目源代码+全部数据Python 实现的爬取汽车之家数据并进行可视化展示项目源代码+全部数据Python 实现的爬取汽车之家数据并进行可视化展示项目源代码+全部数据Python 实现的爬取汽车之家数据并进行可视化展示项目源代码+全部数据Python 实现的爬取汽车之家数据并进行可视化展示项目源代码+全部数据Python 实现的爬取汽车之家数据并进行可视化展示项目源代码+全部数据Python 实现的爬取汽车之家数据并进行可视化展示项目源代码+全部数据Python 实现的爬取汽车之家数据并进行可视化展示项目源代码+全部数据Python 实现的爬取汽车之家数据并进行可视化展示项目源代码+全部数据Python 实现的爬取汽车之家数据并进行可视化展示项目源代码+全部数据Python 实现的爬取汽车之家数据并进行可视化展示项目源代码+全部数据Python 实现的爬取汽车之家数据并进行可视化展示项目源代码+全部数

    基于Gensim和Jieba的中文文本聚类LDA模型构建与优化

    内容概要:本文详细介绍了如何利用Gensim库和Jieba分词工具进行中文文本聚类,尤其是LDA(Latent Dirichlet Allocation)主题模型的应用。首先,通过自定义词典和停用词表来提高分词准确性,确保专业术语不会被错误分割。然后,将分词后的文本转换为词袋模型,作为LDA模型的输入。文中还探讨了多个重要参数的选择与调优方法,如主题数量(num_topics)、迭代次数(passes)、以及随机种子(random_state)。此外,作者分享了一些实用的经验,例如如何通过coherence score评估模型质量,以及如何使用pyLDAvis进行可视化展示。 适合人群:有一定编程基础的数据分析师、自然语言处理工程师、文本挖掘研究人员。 使用场景及目标:适用于需要从大量非结构化文本中抽取潜在主题的场景,如舆情分析、市场调研、文献分类等。主要目标是帮助用户掌握LDA模型的基本原理及其在中文环境下的具体实现方法。 其他说明:本文不仅提供了完整的代码示例,还强调了实践中需要注意的问题和技巧,使读者能够更好地理解和应用这一强大的文本分析工具。

    毕业设计基于Python+Yolov5路面桥梁裂缝检测识别项目源代码+模型

    毕业设计基于Python+Yolov5路面桥梁裂缝检测识别项目源代码+模型,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 毕业设计基于Python+Yolov5路面桥梁裂缝检测识别项目源代码+模型毕业设计基于Python+Yolov5路面桥梁裂缝检测识别项目源代码+模型毕业设计基于Python+Yolov5路面桥梁裂缝检测识别项目源代码+模型毕业设计基于Python+Yolov5路面桥梁裂缝检测识别项目源代码+模型毕业设计基于Python+Yolov5路面桥梁裂缝检测识别项目源代码+模型毕业设计基于Python+Yolov5路面桥梁裂缝检测识别项目源代码+模型毕业设计基于Python+Yolov5路面桥梁裂缝检测识别项目源代码+模型毕业设计基于Python+Yolov5路面桥梁裂缝检测识别项目源代码+模型毕业设计基于Python+Yolov5路面桥梁裂缝检测识别项目源代码+模型毕业设计基于Python+Yolov5路面桥梁裂缝检测识别项目源代码+模型毕业设计基于Python+Yolov5路面桥梁裂缝检测识别项目源代码+模型毕业设计基于Python+Yolov5路面桥梁裂缝检测识别项目源代码+模型毕业设计基于Python+Yolov5路面桥梁裂缝检测识别项目源代码+模型毕业设计基于Python+Yolov5路面桥梁裂缝检测识别项目源代码+模型毕业设计基于Python+Yolov5路面桥梁裂缝检测识别项目源代码+模型毕业设计基于Python+Yolov5路面桥梁裂缝检测识别项目源代码+模型毕业设计基于Python+Yolov5路面桥梁裂缝检测识别项目源代码+模型毕业设计基于Python+Yolo

    go2rtc流媒体平台,支持rtsp大华摄像头海康H264 H265 WEBRTC

    go2rtc流媒体平台,支持rtsp大华摄像头海康H264 H265 WEBRTC,有支持http接口

    基于Python实现Boss直聘岗位数据采集及分析可视化项目源代码+数据+文档说明

    基于Python实现Boss直聘岗位数据采集及分析可视化项目源代码+数据+文档说明,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于Python实现Boss直聘岗位数据采集及分析可视化项目源代码+数据+文档说明基于Python实现Boss直聘岗位数据采集及分析可视化项目源代码+数据+文档说明基于Python实现Boss直聘岗位数据采集及分析可视化项目源代码+数据+文档说明基于Python实现Boss直聘岗位数据采集及分析可视化项目源代码+数据+文档说明基于Python实现Boss直聘岗位数据采集及分析可视化项目源代码+数据+文档说明基于Python实现Boss直聘岗位数据采集及分析可视化项目源代码+数据+文档说明基于Python实现Boss直聘岗位数据采集及分析可视化项目源代码+数据+文档说明基于Python实现Boss直聘岗位数据采集及分析可视化项目源代码+数据+文档说明基于Python实现Boss直聘岗位数据采集及分析可视化项目源代码+数据+文档说明基于Python实现Boss直聘岗位数据采集及分析可视化项目源代码+数据+文档说明基于Python实现Boss直聘岗位数据采集及分析可视化项目源代码+数据+文档说明基于Python实现Boss直聘岗位数据采集及分析可视化项目源代码+数据+文档说明基于Python实现Boss直聘岗位数据采集及分析可视化项目源代码+数据+文档说明基于Python实现Boss直聘岗位数据采集及分析可视化项目源代码+数据+文档说明基于Python实现Boss直聘岗位数据采集及分析可视化项目源代码+数据+文档说明基于Python实现Boss直聘岗位数据采集及分析可视

    STM32CubeIDE 1.18.1自动补全插件

    STM32CubeIDE自动补全代码功能插件,覆盖STM32CubeIDE\plugins对应文件!

    基于springboot+vue前后端分离,科研工作量管理系统(源码+Mysql数据库+视频+教程),高分项目,开箱即用(毕业设计)(课堂设计)

    基于springboot+vue前后端分离,科研工作量管理系统(源码+Mysql数据库+视频+教程),高分项目,开箱即用(毕业设计)(课堂设计) 现代经济快节奏发展以及不断完善升级的信息化技术,让传统数据信息的管理升级为软件存储,归纳,集中处理数据信息的管理方式。本科研工作量管理系统就是在这样的大环境下诞生,其可以帮助管理者在短时间内处理完毕庞大的数据信息,使用这种软件工具可以帮助管理人员提高事务处理效率,达到事半功倍的效果。此科研工作量管理系统利用当下成熟完善的SSM框架,使用跨平台的可开发大型商业网站的Java语言,以及最受欢迎的RDBMS应用软件之一的Mysql数据库进行程序开发。实现了用户在线选择试题并完成答题,在线查看考核分数。管理员管理字典管理、工作量管理、科研获奖管理、科研论文管理、秘书管理、科研项目管理、教师管理、管理员管理等功能。科研工作量管理系统的开发根据操作人员需要设计的界面简洁美观,在功能模块布局上跟同类型网站保持一致,程序在实现基本要求功能时,也为数据信息面临的安全问题提供了一些实用的解决方案。可以说该程序在帮助管理者高效率地处理工作事务的同时,也实现了数据信息的整体化,规范化与自动化。

    集装箱号码自动识别软件-DEMO演示程序

    如因版本过旧,测试过程中有任何问题可联系作者获取最新版本,可提供私有化部署API。 1、集装箱箱号OCR识别技术实现流程 (1)图像预处理 目标检测:使用启智畅想模型定位集装箱区域,缩小处理范围。 角度矫正:通过透视变换(如霍夫变换检测边缘)校正倾斜或扭曲的箱号。 图像增强:灰度化、二值化、去噪、对比度调整等,提升文本可读性。 (2)字符区域定位 字符检测:基于深度学习的文本检测模型定位箱号区域。 区域筛选:根据集装箱号长度(11字符)和排列规则筛选候选区域。 (3)字符识别 端到端方法:使用网络神经以及深度学习模型直接识别字符序列,避免传统分割步骤。 字符分割:投影法、连通域分析或U-Net分割粘连字符。 字符识别:训练CNN分类模型,支持数字以及大小写字母(0-9,A-Z,排除部分易混字符如I和1/O和0)。 (4)校验码验证 校验码比对:将识别的前10位转换为ISO6346标准数值,按权重计算并与OCR结果比对。 校验机制:若校验失败,触发重新识别或人工复核。 2、集装箱箱号OCR识别技术的多场景应用 复杂环境:应对光照不均、污渍、锈蚀、反光等干扰。 特殊字体:集装箱号的特殊字体(如OCR-B字体)需针对性训练。 3.数据集与训练 数据收集:自建数据集。 数据增强:模拟真实场景的噪声、模糊、旋转、仿射变换等。 算法迭代:基于预训练模型(如ImageNet)微调,提升训练效率,通过在线学习更新集装箱箱号OCR识别模型,适应新字体或环境变化。 4.评估指标 字符级准确率:99.9%以上 校验码通过率:99.9%以上 推理速度(FPS):毫秒级识别 通过结合深度学习的集装箱箱号OCR识别技术与规则校验,集装箱号OCR识别系统可达到高精度与高可靠性,广泛应用于物流追踪、海关通关和智能港口管理等场景

    基于Matlab的自动泊车系统中垂直车位路径规划仿真

    内容概要:本文详细介绍了使用Matlab进行自动泊车系统的垂直车位路径规划仿真。首先解释了Hybrid A*算法的基本原理及其在垂直车位泊车中的应用,重点讨论了路径规划的关键步骤,如外摆车头、转向角调整、碰撞检测以及路径生成。文中提供了具体的Matlab代码示例,展示了从车辆参数定义、路径点生成到最终路径验证的全过程。此外,还探讨了几何分析阶段的车辆运动轨迹建模,包括最小转弯半径的计算和转向圆心的确定。同时,为了确保路径的安全性和可行性,引入了边界圆检测法进行碰撞检测,并对路径进行了优化以满足实际驾驶的需求。 适合人群:对自动驾驶技术感兴趣的科研人员、工程师以及希望深入了解自动泊车系统的学生。 使用场景及目标:适用于研究和开发自动泊车系统的路径规划算法,帮助开发者理解和实现自动泊车过程中遇到的技术挑战,如路径规划、碰撞检测和路径优化。 其他说明:本文不仅提供了理论分析,还有详细的代码实现,便于读者快速上手并进行实验。同时,文中提到的一些技巧和注意事项对于提高仿真的准确性和实用性非常有帮助。

Global site tag (gtag.js) - Google Analytics