一、B树
1、B树的定义
B树是一种平衡的多分树,通常我们说m阶的B树,它必须满足如下条件:
(1)每个结点至多有m个子结点;
(2)除根结点和叶结点外,其它每个结点至少有 个子结点;
(3)若根结点不是叶子结点,则至少有两个子结点;
(4)所有的叶结点在同一层;
(5)有k个子结点的非根结点恰好包含k-1个关键码。
2、B树的查找
B树上的查找是一个顺指针查找结点和在结点内的关键码中查找交叉进行的过程。从根结点开始,在结点包含的关键码中查找给定的关键码,找到则查找成功;否则确定给定关键码可能在的子树,重复上面的操作,直到查找成功或者指针为空为止。
下图显示了在B树中查找关键码21的过程。
3、B树的插入
首先是在恰当的叶子结点中添加关键码,如果该结点中关键码不超过m-1个,则插入成功。否则要把这个结点分裂为两个。并把中间的一个关键码拿出来插到结点的父结点里去。父结点也可能是满的,就需要再分裂,再往上插。最坏的情况,这个过程可能一直传到根,如果需要分裂根,由于根是没有父结点的,这时就建立一个新的根结点。插入可能导致B树朝着根的方向生长。
下图显示了在B树中插入关键码33的过程。
4、B树的删除
B树中的删除操作与插入操作类似,但要稍微复杂些。如果删除的关键码不在叶结点层,则先把此关键码与它在B树里的后继对换位置,然后再删除该关键码。如果删除的关键码在叶结点层,则把它从它所在的结点里去掉,这可能导致此结点所包含的关键码的个数小于 -1。这种情况下,考察该结点的左或右兄弟,从兄弟结点移若干个关键码到该结点中来(这也涉及到它们的父结点中的一个关键码要做相应变化),使两个结点所含关键码个数基本相同。只有在兄弟结点的关键码个数也很少,刚好等于 -1时,这个移动不能进行。这种情况下,要把将删除关键码的结点,它的兄弟结点及它们的父结点中的一个关键码合并为一个结点。
二、B+树
1、B+树的概念
B+树是B树的一种变形树,它与B树的差异在于:
有k个子结点的结点必然有k个关键码;
非叶结点仅具有索引作用,跟记录有关的信息均存放在叶结点中。
2、B+树的查找
跟B树的查找类似,但是也有不同。由于跟记录有关的信息存放在叶结点中,查找时若在上层已找到待查的关键码,并不停止,而是继续沿指针向下一直查到叶结点层的关键码。此外,B+树的所有叶结点构成一个有序链表,可以按照关键码排序的次序遍历全部记录。上面两种方式结合起来,使得B+树非常适合范围检索。
3、B+树的插入
B+树的插入与B树的插入过程类似。不同的是B+树在叶结点上进行,如果叶结点中的关键码个数超过m,就必须分裂成关键码数目大致相同的两个结点,并保证上层结点中有这两个结点的最大关键码。
4、B+树的删除
B+树中的关键码在叶结点层删除后,其在上层的复本可以保留,作为一个"分解关键码"存在,如果因为删除而造成结点中关键码数小于 ,其处理过程与B树的处理一样。
不同于B树只适合随机检索,B+树同时支持随机检索和顺序检索,在实际中应用比较多。
相关推荐
### B树、B+树、B-树详解 #### B树 B树是一种自平衡的树数据结构,常用于数据库和文件系统中。它保证了树的高度较低,从而提高了查找效率。 **特点:** 1. **节点度数:** 所有非叶子结点至多拥有两个儿子(Left和...
与B树相比,B+树的所有叶子节点都位于同一层,且叶子节点之间通过指针相互连接,这使得B+树非常适合范围查询和顺序访问。 #### 三、代码结构分析 1. **文件头注释**: - 作者:bysvking - 时间:2012年5月 - ...
《B树和B+树的插入、删除图文详解》 B树和B+树是数据库和文件系统中常用的高效数据结构,主要用于管理大量数据的存储和检索。它们都是多路平衡查找树,能够保证查找效率始终处于对数级别。本文将深入解析B树和B+树...
B-树和B+树的C语言实现(数据结构)。
转B树,B树,B+树,B树转B树,B树,B+树,B树转B树,B树,B+树,B树
- B+树的叶子节点之间有链指针,便于全序遍历,而B树没有这个特性。 - B+树对磁盘I/O的优化更彻底,适合大容量数据存储。 6. **实际使用中的注意事项** - 文件实现B+树时,需要考虑文件的读写操作,如文件映射、...
B+树索引 B+树索引 B+树索引 B+树索引 B+树索引 B+树索引
B+树是B树的一个变种,在B+树中,所有的实际数据(即key值)仅出现在叶子节点,并且所有的叶子节点形成了一个链表。非叶子节点存储的是路由值,用于在树中导航,但它们本身不是实际存储的数据。这个特性使得B+树在...
B树、B-树、B+树以及B树++和R树是数据库和文件系统中常用的高效数据结构,它们主要用于实现磁盘或其他外部存储的查找。这些数据结构的设计目标是减少磁盘I/O操作,提高数据访问速度,因为磁盘读写速度远慢于内存。 ...
【B+树详解】 B+树,全称为“平衡多路搜索树”(Balanced Plus Tree),是一种在数据库和文件系统中广泛使用的高效数据结构,主要用于数据存储和检索。它结合了二叉查找树和链表的特点,优化了对磁盘等外存储设备的...
### B树-B+树-B*树谈到R树 #### 一、引言 在计算机科学领域,树形数据结构作为一种高效的数据组织方式被广泛应用。在众多树形结构中,B树、B+树、B*树和R树因其在处理大规模数据集时表现出的优秀性能而备受关注。...
根据给定文件的信息,我们可以深入探讨B+树这一数据结构的关键知识点,以及它在数据库系统中的应用和特性。 ### B+树概述 B+树是一种自平衡的树数据结构,常用于实现虚拟内存、文件系统和数据库索引。它是由Rudolf...
**B+树详解** B+树(B Plus Tree)是一种自平衡的树数据结构,广泛应用于数据库和文件系统中,因为它能保持数据排序并提供快速的查找、插入和删除操作。这种数据结构的特点是所有数据都在叶子节点,非叶子节点只...
在IT行业中,数据结构是计算机科学的基础之一,B+树作为一种高效的数据索引结构,广泛应用于数据库管理系统和文件系统中。本压缩包“b+b-树c语言版”提供了C语言实现的B+树相关功能,包括创建、删除、查询和插入操作...
步骤为数据库文件创建一个B+树索引: (1)生成数据文件, (2)为数据库文件的属性创建B+ 树文件。 (3)给定键值,通过B+树进行查找。同时比较与直接扫描表的性能差别。(利用B+树时可根据内存大小决定放置多少层次到...
B-树和B+树是两种高效的数据结构,主要用于数据库和文件系统的索引,以优化大容量数据的检索效率。本项目提供的源代码是C++实现的B-树和B+树,有助于学习者深入理解这两种数据结构的内部机制。 首先,B-树...
B+树是一种广泛应用于数据库和文件系统中的数据结构,它的设计目的是为了高效地进行数据检索。本文将深入探讨B+树的插入和删除操作,帮助读者通过直观的图解理解这一复杂的概念。 首先,我们需要理解B+树的基本特征...
【B树、B+树和B*树:数据结构中的高效索引技术】 在计算机科学中,数据结构的选择对算法的效率至关重要。特别是在处理大规模数据时,如何有效地存储和检索信息是一个关键问题。B树(B-tree)、B+树(B+tree)和B*树...
B+树实现源码(C++) 本资源提供了B+树实现源码,用于提高读写盘区的性能。B+树是一种高效的数据结构,提供快速搜索和插入文件的方法。在JFS文件系统中,B+树用于描述文件内的逻辑字节范围和磁盘上字节范围的物理...
总结起来,B 树和B+树的主要差异在于数据的存储位置(B树在非叶节点和叶节点,B+树只在叶节点)和叶节点的链接方式(B树无链接,B+树有链接)。这些差异决定了它们在不同应用场景下的性能表现。选择哪种树取决于具体...