1. 旧版API
-- 源代码
MaxTemperatureMapper.java
package com.hadoop.study.chap01; import java.io.IOException; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapred.MapReduceBase; import org.apache.hadoop.mapred.Mapper; import org.apache.hadoop.mapred.OutputCollector; import org.apache.hadoop.mapred.Reporter; public class MaxTemperatureMapper extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> { private static final int MISSING = 9999; @Override public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter report) throws IOException { String line = value.toString(); String year = line.substring(15, 19); int airTemperature; if (line.charAt(87) == '+') { airTemperature = Integer.parseInt(line.substring(88, 92)); } else { airTemperature = Integer.parseInt(line.substring(87, 92)); } String quaility = line.substring(92, 93); if (airTemperature != MISSING && quaility.matches("[01459]")) { output.collect(new Text(year), new IntWritable(airTemperature)); } } }
MaxTemperatureReducer.java
package com.hadoop.study.chap01; import java.io.IOException; import java.util.Iterator; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapred.MapReduceBase; import org.apache.hadoop.mapred.OutputCollector; import org.apache.hadoop.mapred.Reducer; import org.apache.hadoop.mapred.Reporter; public class MaxTemperatureReducer extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> { @Override public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter report) throws IOException { int maxAirTemperature = Integer.MIN_VALUE; while (values.hasNext()) { maxAirTemperature = Math.max(maxAirTemperature, values.next().get()); } output.collect(key, new IntWritable(maxAirTemperature)); } }
MaxTemperature.java
package com.hadoop.study.chap01; import java.io.IOException; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapred.FileInputFormat; import org.apache.hadoop.mapred.FileOutputFormat; import org.apache.hadoop.mapred.JobClient; import org.apache.hadoop.mapred.JobConf; public class MaxTemperature { public static void main(String[] args) throws IOException { if (args.length != 2) { System.err.println("Usage: MaxTemperature <input path> <output path>"); System.exit(-1); } JobConf conf = new JobConf(MaxTemperature.class); conf.setJobName("Max Temperature"); FileInputFormat.addInputPath(conf, new Path(args[0])); FileOutputFormat.setOutputPath(conf, new Path(args[1])); conf.setMapperClass(MaxTemperatureMapper.class); conf.setReducerClass(MaxTemperatureReducer.class); conf.setOutputKeyClass(Text.class); conf.setOutputValueClass(IntWritable.class); JobClient.runJob(conf); } }
-- 执行
1) 将程序打包成hadoop-study.jar
2) 将输入文件1901上传至hadoop的master节点的/home/hadoop/input目录下
3) 将输入文件导入HDFS中
hadoop fs -copyFromLocal /home/hadoop/input input
4) 将jar包上传至hadoop的master节点的/home/hadoop/task目录下
5) 运行代码
hadoop jar /home/hadoop/task/hadoop-study.jar com.hadoop.study.chap01.MaxTemperature input/1901 output
-- 控制台输出
14/02/24 23:03:20 WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same. 14/02/24 23:03:20 INFO util.NativeCodeLoader: Loaded the native-hadoop library 14/02/24 23:03:20 WARN snappy.LoadSnappy: Snappy native library not loaded 14/02/24 23:03:20 INFO mapred.FileInputFormat: Total input paths to process : 1 14/02/24 23:03:21 INFO mapred.JobClient: Running job: job_201402241759_0005 14/02/24 23:03:22 INFO mapred.JobClient: map 0% reduce 0% 14/02/24 23:03:29 INFO mapred.JobClient: map 50% reduce 0% 14/02/24 23:03:31 INFO mapred.JobClient: map 100% reduce 0% 14/02/24 23:03:37 INFO mapred.JobClient: map 100% reduce 16% 14/02/24 23:04:15 INFO mapred.JobClient: Task Id : attempt_201402241759_0005_m_000001_0, Status : FAILED Too many fetch-failures 14/02/24 23:04:16 WARN mapred.JobClient: Error reading task outputConnection refused 14/02/24 23:04:16 WARN mapred.JobClient: Error reading task outputConnection refused 14/02/24 23:04:17 INFO mapred.JobClient: map 50% reduce 16% 14/02/24 23:04:20 INFO mapred.JobClient: map 100% reduce 16% 14/02/24 23:04:38 INFO mapred.JobClient: map 100% reduce 33% 14/02/24 23:04:40 INFO mapred.JobClient: map 100% reduce 100% 14/02/24 23:04:41 INFO mapred.JobClient: Job complete: job_201402241759_0005 14/02/24 23:04:41 INFO mapred.JobClient: Counters: 30 14/02/24 23:04:41 INFO mapred.JobClient: Job Counters 14/02/24 23:04:41 INFO mapred.JobClient: Launched reduce tasks=1 14/02/24 23:04:41 INFO mapred.JobClient: SLOTS_MILLIS_MAPS=16037 14/02/24 23:04:41 INFO mapred.JobClient: Total time spent by all reduces waiting after reserving slots (ms)=0 14/02/24 23:04:41 INFO mapred.JobClient: Total time spent by all maps waiting after reserving slots (ms)=0 14/02/24 23:04:41 INFO mapred.JobClient: Launched map tasks=3 14/02/24 23:04:41 INFO mapred.JobClient: Data-local map tasks=3 14/02/24 23:04:41 INFO mapred.JobClient: SLOTS_MILLIS_REDUCES=69940 14/02/24 23:04:41 INFO mapred.JobClient: File Input Format Counters 14/02/24 23:04:41 INFO mapred.JobClient: Bytes Read=890559 14/02/24 23:04:41 INFO mapred.JobClient: File Output Format Counters 14/02/24 23:04:41 INFO mapred.JobClient: Bytes Written=9 14/02/24 23:04:41 INFO mapred.JobClient: FileSystemCounters 14/02/24 23:04:41 INFO mapred.JobClient: FILE_BYTES_READ=72210 14/02/24 23:04:41 INFO mapred.JobClient: HDFS_BYTES_READ=890763 14/02/24 23:04:41 INFO mapred.JobClient: FILE_BYTES_WRITTEN=305149 14/02/24 23:04:41 INFO mapred.JobClient: HDFS_BYTES_WRITTEN=9 14/02/24 23:04:41 INFO mapred.JobClient: Map-Reduce Framework 14/02/24 23:04:41 INFO mapred.JobClient: Map output materialized bytes=72216 14/02/24 23:04:41 INFO mapred.JobClient: Map input records=6565 14/02/24 23:04:41 INFO mapred.JobClient: Reduce shuffle bytes=72216 14/02/24 23:04:41 INFO mapred.JobClient: Spilled Records=13128 14/02/24 23:04:41 INFO mapred.JobClient: Map output bytes=59076 14/02/24 23:04:41 INFO mapred.JobClient: Total committed heap usage (bytes)=412942336 14/02/24 23:04:41 INFO mapred.JobClient: CPU time spent (ms)=3780 14/02/24 23:04:41 INFO mapred.JobClient: Map input bytes=888190 14/02/24 23:04:41 INFO mapred.JobClient: SPLIT_RAW_BYTES=204 14/02/24 23:04:41 INFO mapred.JobClient: Combine input records=0 14/02/24 23:04:41 INFO mapred.JobClient: Reduce input records=6564 14/02/24 23:04:41 INFO mapred.JobClient: Reduce input groups=1 14/02/24 23:04:41 INFO mapred.JobClient: Combine output records=0 14/02/24 23:04:41 INFO mapred.JobClient: Physical memory (bytes) snapshot=333090816 14/02/24 23:04:41 INFO mapred.JobClient: Reduce output records=1 14/02/24 23:04:41 INFO mapred.JobClient: Virtual memory (bytes) snapshot=1122193408 14/02/24 23:04:41 INFO mapred.JobClient: Map output records=6564
2.新版API
-- 源代码
MaxTemperatureMapper.java
package com.hadoop.study.chap01.news; import java.io.IOException; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; public class MaxTemperatureMapper extends Mapper<LongWritable, Text, Text, IntWritable> { private static final int MISSING = 9999; @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString(); String year = line.substring(15, 19); int airTemperature; if (line.charAt(87) == '+') { airTemperature = Integer.parseInt(line.substring(88, 92)); } else { airTemperature = Integer.parseInt(line.substring(87, 92)); } String quaility = line.substring(92, 93); if (airTemperature != MISSING && quaility.matches("[01459]")) { context.write(new Text(year), new IntWritable(airTemperature)); } } }
MaxTemperatureReducer.java
package com.hadoop.study.chap01.news; import java.io.IOException; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Reducer; public class MaxTemperatureReducer extends Reducer<Text, IntWritable, Text, IntWritable> { @Override protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int maxAirTemperature = Integer.MIN_VALUE; for (IntWritable airTemperature : values) { maxAirTemperature = Math.max(maxAirTemperature, airTemperature.get()); } context.write(new Text(key), new IntWritable(maxAirTemperature)); } }
MaxTemperature.java
package com.hadoop.study.chap01.news; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class MaxTemperature { public static void main(String[] args) throws Exception { if (args.length != 2) { System.err.println("Usage: MaxTemperature <input path> <output path>"); System.exit(-1); } Job job = new Job(); job.setJarByClass(MaxTemperature.class); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); job.setMapperClass(MaxTemperatureMapper.class); job.setReducerClass(MaxTemperatureReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); System.exit(job.waitForCompletion(true) ? 0 : 1); } }
-- 执行
参考旧版本执行步骤
-- 控制台输出
14/02/24 23:10:37 WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same. 14/02/24 23:10:37 INFO input.FileInputFormat: Total input paths to process : 1 14/02/24 23:10:37 INFO util.NativeCodeLoader: Loaded the native-hadoop library 14/02/24 23:10:37 WARN snappy.LoadSnappy: Snappy native library not loaded 14/02/24 23:10:38 INFO mapred.JobClient: Running job: job_201402241759_0006 14/02/24 23:10:39 INFO mapred.JobClient: map 0% reduce 0% 14/02/24 23:10:45 INFO mapred.JobClient: map 100% reduce 0% 14/02/24 23:10:53 INFO mapred.JobClient: map 100% reduce 33% 14/02/24 23:10:55 INFO mapred.JobClient: map 100% reduce 100% 14/02/24 23:10:56 INFO mapred.JobClient: Job complete: job_201402241759_0006 14/02/24 23:10:56 INFO mapred.JobClient: Counters: 29 14/02/24 23:10:56 INFO mapred.JobClient: Job Counters 14/02/24 23:10:56 INFO mapred.JobClient: Launched reduce tasks=1 14/02/24 23:10:56 INFO mapred.JobClient: SLOTS_MILLIS_MAPS=6900 14/02/24 23:10:56 INFO mapred.JobClient: Total time spent by all reduces waiting after reserving slots (ms)=0 14/02/24 23:10:56 INFO mapred.JobClient: Total time spent by all maps waiting after reserving slots (ms)=0 14/02/24 23:10:56 INFO mapred.JobClient: Launched map tasks=1 14/02/24 23:10:56 INFO mapred.JobClient: Data-local map tasks=1 14/02/24 23:10:56 INFO mapred.JobClient: SLOTS_MILLIS_REDUCES=9502 14/02/24 23:10:56 INFO mapred.JobClient: File Output Format Counters 14/02/24 23:10:56 INFO mapred.JobClient: Bytes Written=9 14/02/24 23:10:56 INFO mapred.JobClient: FileSystemCounters 14/02/24 23:10:56 INFO mapred.JobClient: FILE_BYTES_READ=72210 14/02/24 23:10:56 INFO mapred.JobClient: HDFS_BYTES_READ=888304 14/02/24 23:10:56 INFO mapred.JobClient: FILE_BYTES_WRITTEN=252199 14/02/24 23:10:56 INFO mapred.JobClient: HDFS_BYTES_WRITTEN=9 14/02/24 23:10:56 INFO mapred.JobClient: File Input Format Counters 14/02/24 23:10:56 INFO mapred.JobClient: Bytes Read=888190 14/02/24 23:10:56 INFO mapred.JobClient: Map-Reduce Framework 14/02/24 23:10:56 INFO mapred.JobClient: Map output materialized bytes=72210 14/02/24 23:10:56 INFO mapred.JobClient: Map input records=6565 14/02/24 23:10:56 INFO mapred.JobClient: Reduce shuffle bytes=72210 14/02/24 23:10:56 INFO mapred.JobClient: Spilled Records=13128 14/02/24 23:10:56 INFO mapred.JobClient: Map output bytes=59076 14/02/24 23:10:56 INFO mapred.JobClient: CPU time spent (ms)=2050 14/02/24 23:10:56 INFO mapred.JobClient: Total committed heap usage (bytes)=210173952 14/02/24 23:10:56 INFO mapred.JobClient: Combine input records=0 14/02/24 23:10:56 INFO mapred.JobClient: SPLIT_RAW_BYTES=114 14/02/24 23:10:56 INFO mapred.JobClient: Reduce input records=6564 14/02/24 23:10:56 INFO mapred.JobClient: Reduce input groups=1 14/02/24 23:10:56 INFO mapred.JobClient: Combine output records=0 14/02/24 23:10:56 INFO mapred.JobClient: Physical memory (bytes) snapshot=190836736 14/02/24 23:10:56 INFO mapred.JobClient: Reduce output records=1 14/02/24 23:10:56 INFO mapred.JobClient: Virtual memory (bytes) snapshot=748298240 14/02/24 23:10:56 INFO mapred.JobClient: Map output records=6564
MaxTemperatureWithCombiner.java
package com.hadoop.study.chap01.news; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class MaxTemperatureWithCombiner { public static void main(String[] args) throws Exception { if (args.length != 2) { System.err.println("Usage: MaxTemperature <input path> <output path>"); System.exit(-1); } Job job = new Job(); job.setJobName("Max Temperature"); job.setJarByClass(MaxTemperatureWithCombiner.class); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); job.setMapperClass(MaxTemperatureMapper.class); job.setReducerClass(MaxTemperatureReducer.class); job.setCombinerClass(MaxTemperatureReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); System.exit(job.waitForCompletion(true) ? 0 : 1); } }
-- 控制台输出
14/02/24 23:12:16 WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same. 14/02/24 23:12:17 INFO input.FileInputFormat: Total input paths to process : 1 14/02/24 23:12:17 INFO util.NativeCodeLoader: Loaded the native-hadoop library 14/02/24 23:12:17 WARN snappy.LoadSnappy: Snappy native library not loaded 14/02/24 23:12:17 INFO mapred.JobClient: Running job: job_201402241759_0007 14/02/24 23:12:18 INFO mapred.JobClient: map 0% reduce 0% 14/02/24 23:12:30 INFO mapred.JobClient: map 100% reduce 0% 14/02/24 23:12:41 INFO mapred.JobClient: map 100% reduce 33% 14/02/24 23:12:43 INFO mapred.JobClient: map 100% reduce 100% 14/02/24 23:12:44 INFO mapred.JobClient: Job complete: job_201402241759_0007 14/02/24 23:12:44 INFO mapred.JobClient: Counters: 29 14/02/24 23:12:44 INFO mapred.JobClient: Job Counters 14/02/24 23:12:44 INFO mapred.JobClient: Launched reduce tasks=1 14/02/24 23:12:44 INFO mapred.JobClient: SLOTS_MILLIS_MAPS=10591 14/02/24 23:12:44 INFO mapred.JobClient: Total time spent by all reduces waiting after reserving slots (ms)=0 14/02/24 23:12:44 INFO mapred.JobClient: Total time spent by all maps waiting after reserving slots (ms)=0 14/02/24 23:12:44 INFO mapred.JobClient: Launched map tasks=1 14/02/24 23:12:44 INFO mapred.JobClient: Data-local map tasks=1 14/02/24 23:12:44 INFO mapred.JobClient: SLOTS_MILLIS_REDUCES=13038 14/02/24 23:12:44 INFO mapred.JobClient: File Output Format Counters 14/02/24 23:12:44 INFO mapred.JobClient: Bytes Written=9 14/02/24 23:12:44 INFO mapred.JobClient: FileSystemCounters 14/02/24 23:12:44 INFO mapred.JobClient: FILE_BYTES_READ=17 14/02/24 23:12:44 INFO mapred.JobClient: HDFS_BYTES_READ=888304 14/02/24 23:12:44 INFO mapred.JobClient: FILE_BYTES_WRITTEN=108261 14/02/24 23:12:44 INFO mapred.JobClient: HDFS_BYTES_WRITTEN=9 14/02/24 23:12:44 INFO mapred.JobClient: File Input Format Counters 14/02/24 23:12:44 INFO mapred.JobClient: Bytes Read=888190 14/02/24 23:12:44 INFO mapred.JobClient: Map-Reduce Framework 14/02/24 23:12:44 INFO mapred.JobClient: Map output materialized bytes=17 14/02/24 23:12:44 INFO mapred.JobClient: Map input records=6565 14/02/24 23:12:44 INFO mapred.JobClient: Reduce shuffle bytes=17 14/02/24 23:12:44 INFO mapred.JobClient: Spilled Records=2 14/02/24 23:12:44 INFO mapred.JobClient: Map output bytes=59076 14/02/24 23:12:44 INFO mapred.JobClient: CPU time spent (ms)=4460 14/02/24 23:12:44 INFO mapred.JobClient: Total committed heap usage (bytes)=210173952 14/02/24 23:12:44 INFO mapred.JobClient: Combine input records=6564 14/02/24 23:12:44 INFO mapred.JobClient: SPLIT_RAW_BYTES=114 14/02/24 23:12:44 INFO mapred.JobClient: Reduce input records=1 14/02/24 23:12:44 INFO mapred.JobClient: Reduce input groups=1 14/02/24 23:12:44 INFO mapred.JobClient: Combine output records=1 14/02/24 23:12:44 INFO mapred.JobClient: Physical memory (bytes) snapshot=191209472 14/02/24 23:12:44 INFO mapred.JobClient: Reduce output records=1 14/02/24 23:12:44 INFO mapred.JobClient: Virtual memory (bytes) snapshot=748470272 14/02/24 23:12:44 INFO mapred.JobClient: Map output records=6564
3. 对比
--Mapper,Reducer的实现由实现接口变成继承类
--使用Job类来控制作业,而不是JobClient
--控制台输出,旧版本Launched map tasks=3(除去FAILED,数量为2),新版本Launched map tasks=1,使用combiner之后Reduce input records=1
4. 参考资料
Hadoop权威指南
相关推荐
【Hadoop第一次培训材料】是针对初学者设计的一份详细教程,旨在介绍分布式计算框架Hadoop的核心概念和技术。Hadoop是Apache软件基金会开发的一个开源项目,它为处理和存储大量数据提供了可扩展的、可靠的解决方案。...
Hadoop单机伪分布式搭建和运行第一个WordCount程序 Hadoop是Apache基金会下的一个开源的大数据处理框架,它广泛应用于数据处理、数据分析和机器学习等领域。下面是关于Hadoop单机伪分布式搭建和运行第一个WordCount...
- **ZooKeeper**:一种分布式的协调服务,用于分布式应用程序之间的同步,比如配置维护、域名服务、分布式同步等。 - **Sqoop**:用于在Hadoop和关系型数据库之间高效传输数据的工具。 - **Flume**:一个高可靠、高...
【IT十八掌徐培成】Hadoop第01天-05.hadoop伪分布式2.zip 这个压缩包文件主要涵盖了Hadoop技术中的一个重要概念——伪分布式模式。在深入讲解这个主题之前,我们先来理解一下Hadoop是什么。Hadoop是一个开源的、基于...
1. **Hadoop概述**:Hadoop是由Apache基金会开发的一个开源项目,基于Google的MapReduce编程模型和GFS分布式文件系统。它的设计目标是高容错性、可扩展性和高效的数据处理。 2. **Hadoop组件**: - **HDFS(Hadoop...
Hadoop的I/O、MapReduce应用程序开发;MapReduce的工作机制;MapReduce的类型和格式;MapReduce的特性;如何构建Hadoop集群,如何管理Hadoop;Pig简介;Hbase简介;Hive简介;ZooKeeper简介;开源工具Sqoop,最后还...
1. **hadoop.dll**:这是一个动态链接库文件,它是Hadoop在Windows系统上的一个组件,用于实现某些特定功能,如JNI(Java Native Interface)调用,使得Java代码可以与本地系统交互。如果没有这个文件,Hadoop可能...
这个“细细品味Hadoop_Hadoop集群(第9期)_MapReduce初级案例”主题聚焦于Hadoop集群的核心组件——MapReduce,这是一种分布式计算模型,对于处理海量数据具有重要作用。 MapReduce的工作原理可以分为两个主要阶段...
在Hadoop第四版中,作者们对Hadoop生态系统的最新发展进行了全面更新。这一版本涵盖了Hadoop 2.x系列的诸多改进,包括YARN(Yet Another Resource Negotiator),这是一种新的资源管理器,将作业调度与集群资源管理...
《Hadoop实战第二版》是由陆嘉恒编著的一本深度解析Hadoop技术的专业书籍,其源码的提供为读者提供了亲自动手实践Hadoop的机会,增强了学习效果。Hadoop作为大数据处理领域的基石,它的核心在于分布式存储系统HDFS...
第一天 hadoop的基本概念 伪分布式hadoop集群安装 hdfs mapreduce 演示 01-hadoop职位需求状况.avi 02-hadoop课程安排.avi 03-hadoop应用场景.avi 04-hadoop对海量数据处理的解决思路.avi 05-hadoop版本选择和...
《Hadoop权威指南》第三版是Hadoop领域的经典著作,为读者全面解析了这个分布式计算框架的核心原理与实际应用。本书旨在帮助读者深入理解Hadoop的架构、设计思想以及如何在实际项目中有效地运用它。以下是对这本书...
1. 下载Hadoop Eclipse插件:通常,你可以从Apache Hadoop官方网站或第三方插件库找到适用于Eclipse的Hadoop插件。确保下载的插件版本与你的Eclipse和Hadoop版本兼容。 2. 安装插件:将下载的插件文件(通常是.zip...
1. **验证下载**:首先,检查Hadoop的下载源,确保是从官方或信誉良好的第三方网站获取的。有时,不完整的下载或损坏的文件会导致缺失关键组件。 2. **重新下载**:如果确认下载无误,尝试重新下载并重新安装Hadoop...
在IT行业中,Hadoop是一个广泛使用的开源框架,主要用于大数据处理和分布式存储。标题"hadop2.7.x_winutils_exe&&hadoop_dll"暗示我们关注的是Hadoop 2.7.x版本在Windows环境下的两个关键组件:`winutils.exe`和`...
- Hadoop MapReduce:一个Java软件框架,用于编写应用程序,以并行方式处理大数据集。 - Hadoop Ozone:为Hadoop提供一个通用的、可扩展的和高可用的存储平台。 Hadoop的使用场景非常广泛,包括但不限于: - 网络...
本资源"【IT十八掌徐培成】Hadoop第02天-01.Hadoop基础回顾-进程初识-webui.zip"聚焦于Hadoop的基础知识,特别是对Hadoop进程的理解以及如何通过Web UI进行监控。这里我们将深入探讨Hadoop的核心组件、进程架构以及...
在大数据处理领域,Hadoop是一个不可或缺的开源框架,主要用于...总之,正确配置和使用Hadoop的JAR包是开发Hadoop应用程序的关键。通过Eclipse这样的IDE,可以方便地管理这些依赖,加速大数据应用的开发和调试过程。
6. **最佳实践**:作者分享了他们在开发和应用Hadoop过程中的经验和技巧,帮助读者避免常见的陷阱,提高Hadoop应用的效率和性能。 通过阅读《Hadoop权威指南》,无论是初学者还是有经验的开发者,都能对Hadoop有...