任何系统的性能分析以及分布式负载平衡策略的执行,需要首先了解当前系统的资源使用情况。
从资源角度进行划分,可以把资源分为如下4类:
1)处理器资源,CPU
2)内存资源,Memory,从广义概念上讲,这还包括Swap\Cache\Buffer等
3)磁盘资源,Disk
4) 网络资源,Network IO,从广义概念上讲,还要考虑上层网络交换机的带宽和交换机之间的带宽。
1、CPU分析
CPU分析常用的工具top。
2、内存分析
内存分析最常用的工具有free、vmstat等。
一般内存的分析要分成两个层次来进行:
1)系统层面上。free可以查看当前系统的内存使用状况,用来分析机器的内存整体使用状况。
Linux内核为了获取更好的性能,总会尽可能地使用空余内存作为系统Cache,从上图可以看到有23G的系统Cache,对于读多写少的应用而言,这个数据是正常的。
vmstat是一个可以实时查看当前CPU、内存、swap使用的情况,该命令是系统监控与分析的一个常用工具。
- procs:标识了当前有多少进程正在等待执行,由此来判断是否因为资源紧张而造成进程的流程运行。r标示了有多少个进程等待获得CPU访问权限,b代表了有多少个进程处于Sleep状态。一般而言,r b都为0,如果出现b>0的情况,往往是CPU资源不足的一个信号,此时,或许有大量的IO吞吐的应用在执行,或者运行的process消耗了太多的CPU时间片。
- memory: 标识了系统的内存使用状况。具体数值与free命令类似。
- swap:标识了系统的swap的使用的情况,si代表了当前有多少数据从swap区域被置换到内存区域,so代表有多少数据从内存区域被换入到swap。如果系统出现频繁的出现swap换入换出的状况,会影响到系统的性能。
- io:标识了磁盘的读写的活跃情况。bi每秒读block的个数,bo每秒写block的个数,上图中,可以看到当前系统会有较多的写磁盘操作。
- System:in代表每秒系统中断的个数,包括来自于System Clock的中断;cs代表系统上下文切换的次数。
- CPU:us代表用于处理用户态任务的百分比,sy kernel相关的任务占用的百分比,id 空闲状态的百分比,wa:等待IO的百分比。根据经验,id低于40%表示当前系统处于比较繁忙的状态,wa如果较大往往会造成procs中r的值升高。
另外,vmstat -m 会打印slab信息,在Linux Kernel2.2版本引进了slab allocation的分配方式,从而可以更快速的掌握当前系统的内存分配状况。所有的应用程序内存的使用,最终都会映射成对应Cache下的slab空间,因此,通过可以分析出当前系统的内存开辟的分布情况。
跟进一步,我们来看一下在Linux Kernel中内存的原理。在内核中,内存是按照Pages进行组织的,内存分为三类:
1)Read Pages,这部分内存是从disk读取出来的,且在内存中没有做任何修改的数据,常见的形式,如:以Read形式打开的文件、执行的Binary、或者加载的Library等。Linux会尽可能按照需要把数据导入内存,因此,在大部分情况下我们使用free命令看到的Cache部分的内存总会比较大。当内存开始变得短缺时,内核会开始从Cache的数据进行淘汰。
2)Dirty Pages,Kernel修改的内存的数据,并需要写回磁盘的数据。系统进程pdflush就是执行该操作。一旦系统的内存变得短缺,系统进程kswapd会写这些page到磁盘。
3)Anonymous Pages,还有一部分的数据,并没有与一个文件或者设备相对应,但是它存在于一个进程内部。例如:我们在程序中使用的Map结构存储的应用的数据之类的。在内存紧张的时候,kswapd进程会将这些内存写入swap区域,以保证系统的内存空间。
高级一点的内存分析工具有:
pcat、memdump、htop。
pcat可以dump出某个process的内存镜像。在某些特殊的情况下,我们无法分析应用的性能的瓶颈的时候,可以使用该工具。配合strings,可以查看进程里都有那些数据,这可以在一定程度上降低被hang住的程序丢失数据的影响。注意pcat基本会打印全部的内存镜像,所以生成的文件较大。
memdump会打印出系统整个内存镜像。
htop是一个类似与top,但功能更加强大的工具,可以实现对各种系统参数的分析。
优化策略与补充:
1)对于性能要求比较高,同时机器物理内存足够使用的情况下,建议关闭swap分区。如果有ssd的情况下,可以使用ssd空间挂载swap分区。
2)对于JAVA进程,除了使用以上介绍的工具进行profiling之外,还要注意GC的影响,目前根据使用的情况来看,如果使用CMS老生代垃圾回收器,对于IO压力比较高的应用来,不要把CMSInitiatingOccupancyFraction的值设置超过70,一般来看设置在50~60之间比较合适。
3、磁盘分析
目前常用磁盘分析工具有:iostat、iotop、lsof、sar
iostat分析当前系统的整体的读写吞吐。
iotop可以定位io吞吐比较大的进程。
lsof可以查看某个pid下操作的文件。
使用iostat分析随机读还是随机写应用
使用/sbin/hdparm -t /dev/sda测试磁盘/dev/sda的读速度
优化策略:
1)分离系统盘成为独立的volumn。这样做,避免因为应用程序的误操作,造成系统盘的IO过重从而导致系统不可用。上次我们线上Hadoop出现的一次故障,就是因为Hadoop的用户日志数据与系统的根目录属于同一个volumn(有关概念可参考http://en.wikipedia.org/wiki/Logical_Volume_Manager_%28Linux%29),由于用户的maptask频繁写log,造成系统盘的io util长时间处于100%,从而造成节点响应速度变慢。
2) 如果是搭建具有容错特性的系统,尽可能使用单盘Raid0。这样设置的好处是在磁盘故障时造成的影响较小,而且容易监控。
目前,很多系统都是用SSD来提升系统的性能,作为ssd来说,它的物理特性决定了在高速的同时,有更高出现故障的风险,因此,合理的监控可以有利于系统的维护。
诊断标准:
ssd_badblock -d /dev/$ssd_id bad_block的概率超过0.006%就认为有问题,
ssd_bitflip -d /dev/$item 出现unrecoverable的个数大于0,认为出现了问题。
4、网络分析
常用工具:
netstat获取网络使用的信息,这里
nload:获得上行(ongoing)和下行(incoming)的实时网络数据,包含从nload收集到目前为止出现的Max、Min、Average、Current、以及累计的流量。
这个工具适用于获取当前节点的网络流量状况,并由此判断节点的网络负载压力。
如果是网卡是千兆容量,1000Mbps,实际上,如果发现Curr的值超过1000M或者Max超过1000M,或者Avg的值在750M以上,此时配合其它节点ping操作确认该影响。下图就是借助多窗口管理器tmux同时查看nload和ping的状态。
以端口提供的服务,需要跟踪端口上相关连接的状态,例如,我们通过ThriftServer对外提供服务,出现了很多的CLOSE_WAIT状态的连接,经过分析,是由于客户端没有正常关闭对应的handler造成的。如果不及时关闭该链接,会造成因为端口上的连接数过多引起的访问故障。
另外,网络状况需要配合使用ethtool、/sbin/ifconfig 来查看网卡传输数据的情况,尤其查看丢包、错误包的情况,避免因为硬件问题造成的网络服务质量下降的现象。
通过以上的分析,可以确认是否因为网络流量拥塞造成的应用服务性能下降,因为如果网卡长时间处于饱和状态运行,虽然网络协议栈可以保证数据传输的可靠性,但是以Network-IO Intensive的应用就会出现瓶颈,例如Hadoop作业、需要高吞吐的数据库等。目前,这种问题的优化方案是:
1)在应用层面增加数据压缩,降低网络传输的开销。(例如hadoop/hbase 使用lzo压缩)
2)在网络架构上,可以通过网卡bonding。绑定两个千兆网卡,可以增加到2000Mbps的流量,会在很大程度上缓解压力。
3)尝试使用异步模式。根据有些应用的特征,事件驱动模型和异步策略可以实现IO复用,在一定程度上控制网络传输的效率,缓解负载的压力。Linux asynchronous I/O可以参考http://www.ibm.com/developerworks/linux/library/l-async/
总结:系统性能分析的实践方法是一个涉及多个领域的知识积累,下图表示了一个系统分析的Trace方法。
From Binospace, post 系统性能分析的实践方法
文章的脚注信息由WordPress的wp-posturl插件自动生成
相关推荐
内容概要:本文详细介绍了基于STM32单片机的激光雕刻机控制系统的设计。系统包括硬件设计、软件设计和机械结构设计,主要功能有可调节激光功率大小、改变雕刻速率、手动定位、精确雕刻及切割。硬件部分包括STM32最小系统、步进电机驱动模块、激光发生器控制电路、人机交互电路和串口通信电路。软件部分涉及STM32CubeMX配置、G代码解析、步进电机控制、激光功率调节和手动定位功能的实现。 适合人群:对嵌入式系统和激光雕刻机感兴趣的工程师和技术人员。 使用场景及目标:① 适用于需要高精度激光雕刻的应用场合;② 为开发类似的激光雕刻控制系统提供设计参考。 阅读建议:本文提供了详细的硬件和软件设计方案,读者应结合实际应用场景进行理解,重点关注电路设计和代码实现。
白色简洁风格的前端网站模板下载.zip
HarmonyException如何解决.md
sdfsdfdsfsdfs222
html+css+js学习代码html+css+js学习代码html+css+js学习代码 html+css+js学习代码html+css+js学习代码html+css+js学习代码 html+css+js学习代码html+css+js学习代码html+css+js学习代码 html+css+js学习代码html+css+js学习代码html+css+js学习代码 html+css+js学习代码html+css+js学习代码html+css+js学习代码 html+css+js学习代码html+css+js学习代码html+css+js学习代码 html+css+js学习代码html+css+js学习代码html+css+js学习代码 html+css+js学习代码html+css+js学习代码html+css+js学习代码 html+css+js学习代码html+css+js学习代码html+css+js学习代码 html+css+js学习代码html+css+js学习代码html+css+js学习代码 html+css+js学习代码html+css+js学习代码html+css+j
usbgps2.apk
白色简洁风格的家居建材网站模板下载.zip
EventEmitError解决办法.md
白色简洁风格的工艺品展览企业网站源码下载.zip
matlab调制解调 OFDM OTFS 16qam qpsk ldpc turbo在高斯白噪声,频率选择性衰落信道下的误比特率性能仿真,matlab代码 OFDM simulink 包括添加保护间隔(cp),信道均衡(ZF MMSE MRC MA LMSEE) 代码每行都有注释,适用于学习,附带仿真说明,完全不用担心看不懂
build(1).gradle
贴标飞达sw16全套技术资料100%好用.zip
其实这就是历年摘出来的
内容概要:本文针对大规模高分辨率遥感图像的处理问题,提出了一种基于图像分块的可扩展区域合并分割框架。传统的图像分块方法会导致分块边界上的伪影,影响最终结果。为解决这一问题,文中定义了稳定性边缘的概念,并给出了其数学表达,以确保分割结果与不分块时相同。此外,文章还介绍了一种高效的框架实现方法,用于在资源受限的设备上处理大型图像。 适合人群:从事遥感图像处理、计算机视觉及地理信息系统相关领域的研究人员和技术人员。 使用场景及目标:适用于需要处理大规模高分辨率遥感图像的应用场景,如环境监测、自然资源管理等。主要目标是提供一种能够高效处理大规模图像同时保持分割质量的方法。 其他说明:实验结果表明,所提出的算法不仅能够避免分块边界的伪影,而且能够在不同尺度下获得与不分块处理相同的分割结果。
白色简洁风格的手机图片展示博客网站模板.rar
白色简洁风格的外科医疗整站网站源码下载.zip
基于python知识图谱医疗领域问答系统实现源码+使用说明(毕业设计),本资源中的源码都是经过本地编译过可运行的,评审分达到98分,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、毕业设计、期末大作业和课程设计使用需求,如果有需要的话可以放心下载使用。 基于python知识图谱医疗领域问答系统实现源码+使用说明(毕业设计)基于python知识图谱医疗领域问答系统实现源码+使用说明(毕业设计)基于python知识图谱医疗领域问答系统实现源码+使用说明(毕业设计)基于python知识图谱医疗领域问答系统实现源码+使用说明(毕业设计)基于python知识图谱医疗领域问答系统实现源码+使用说明(毕业设计)基于python知识图谱医疗领域问答系统实现源码+使用说明(毕业设计)基于python知识图谱医疗领域问答系统实现源码+使用说明(毕业设计)基于python知识图谱医疗领域问答系统实现源码+使用说明(毕业设计)基于python知识图谱医疗领域问答系统实现源码+使用说明(毕业设计)基于python知识图谱医疗领域问答系统实现源码+使用说明(毕业设计)基于python知识图谱医
在线式缠绕膜机自动覆膜缠绕机sw16全套技术资料100%好用.zip
.archivetemp阅读天数.py