`
jguangyou
  • 浏览: 379827 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

Java 内存分配全面浅析

 
阅读更多

本文将由浅入深详细介绍Java内存分配的原理,以帮助新手更轻松的学习Java。这类文章网上有很多,但大多比较零碎。本文从认知过程角度出发,将带给读者一个系统的介绍。

进入正题前首先要知道的是Java程序运行在JVM(Java Virtual MachineJava虚拟机)上,可以把JVM理解成Java程序和操作系统之间的桥梁,JVM实现了Java的平台无关性,由此可见JVM的重要性。所以在学习Java内存分配原理的时候一定要牢记这一切都是在JVM中进行的,JVM是内存分配原理的基础与前提。

简单通俗的讲,一个完整的Java程序运行过程会涉及以下内存区域:

寄存器:JVM内部虚拟寄存器,存取速度非常快,程序不可控制。

栈:保存局部变量的值,包括:1.用来保存基本数据类型的值;2.保存类的实例,即堆区对象的引用(指针)。也可以用来保存加载方法时的帧。

堆:用来存放动态产生的数据,比如new出来的对象。注意创建出来的对象只包含属于各自的成员变量,并不包括成员方法。因为同一个类的对象拥有各自的成员变量,存储在各自的堆中,但是他们共享该类的方法,并不是每创建一个对象就把成员方法复制一次。

常量池:JVM为每个已加载的类型维护一个常量池,常量池就是这个类型用到的常量的一个有序集合。包括直接常量(基本类型,String)和对其他类型、方法、字段的符号引用(1)。池中的数据和数组一样通过索引访问。由于常量池包含了一个类型所有的对其他类型、方法、字段的符号引用,所以常量池在Java的动态链接中起了核心作用。常量池存在于堆中

代码段:用来存放从硬盘上读取的源程序代码。

数据段:用来存放static定义的静态成员。

下面是内存表示图:



 

 

上图中大致描述了Java内存分配,接下来通过实例详细讲解Java程序是如何在内存中运行的(注:以下图片引用自尚学堂马士兵老师的J2SE课件,图右侧是程序代码,左侧是内存分配示意图,我会一一加上注释)。

预备知识:

 

1.一个Java文件,只要有main入口方法,我们就认为这是一个Java程序,可以单独编译运行。

2.无论是普通类型的变量还是引用类型的变量(俗称实例),都可以作为局部变量,他们都可以出现在栈中。只不过普通类型的变量在栈中直接保存它所对应的值,而引用类型的变量保存的是一个指向堆区的指针,通过这个指针,就可以找到这个实例在堆区对应的对象。因此,普通类型变量只在栈区占用一块内存,而引用类型变量要在栈区和堆区各占一块内存。

示例:

 

 



 

1.JVM自动寻找main方法,执行第一句代码,创建一个Test类的实例,在栈中分配一块内存,存放一个指向堆区对象的指针110925

2.创建一个int型的变量date,由于是基本类型,直接在栈中存放date对应的值9

3.创建两个BirthDate类的实例d1d2,在栈中分别存放了对应的指针指向各自的对象。他们在实例化时调用了有参数的构造方法,因此对象中有自定义初始值。




 
 

 

调用test对象的change1方法,并且以date为参数。JVM读到这段代码时,检测到i是局部变量,因此会把i放在栈中,并且把date的值赋给i




 

 

1234赋给i。很简单的一步。

 



 

 

change1方法执行完毕,立即释放局部变量i所占用的栈空间。

 



 

 

调用test对象的change2方法,以实例d1为参数。JVM检测到change2方法中的b参数为局部变量,立即加入到栈中,由于是引用类型的变量,所以b中保存的是d1中的指针,此时bd1指向同一个堆中的对象。在bd1之间传递是指针。

 



 

 

change2方法中又实例化了一个BirthDate对象,并且赋给b。在内部执行过程是:在堆区new了一个对象,并且把该对象的指针保存在栈中的b对应空间,此时实例b不再指向实例d1所指向的对象,但是实例d1所指向的对象并无变化,这样无法对d1造成任何影响。

 


 

 

 

change2方法执行完毕,立即释放局部引用变量b所占的栈空间,注意只是释放了栈空间,堆空间要等待自动回收。

 

 

 

 

 



 

调用test实例的change3方法,以实例d2为参数。同理,JVM会在栈中为局部引用变量b分配空间,并且把d2中的指针存放在b中,此时d2b指向同一个对象。再调用实例bsetDay方法,其实就是调用d2指向的对象的setDay方法。



 

调用实例bsetDay方法会影响d2,因为二者指向的是同一个对象。



 

change3方法执行完毕,立即释放局部引用变量b

 

以上就是Java程序运行时内存分配的大致情况。其实也没什么,掌握了思想就很简单了。无非就是两种类型的变量:基本类型和引用类型。二者作为局部变量,都放在栈中,基本类型直接在栈中保存值,引用类型只保存一个指向堆区的指针,真正的对象在堆里。作为参数时基本类型就直接传值,引用类型传指针。

小结:

 

1.分清什么是实例什么是对象。Class a= new Class();此时a叫实例,而不能说a是对象。实例在栈中,对象在堆中,操作实例实际上是通过实例的指针间接操作对象。多个实例可以指向同一个对象。

2.栈中的数据和堆中的数据销毁并不是同步的。方法一旦结束,栈中的局部变量立即销毁,但是堆中对象不一定销毁。因为可能有其他变量也指向了这个对象,直到栈中没有变量指向堆中的对象时,它才销毁,而且还不是马上销毁,要等垃圾回收扫描时才可以被销毁。

3.以上的栈、堆、代码段、数据段等等都是相对于应用程序而言的。每一个应用程序都对应唯一的一个JVM实例,每一个JVM实例都有自己的内存区域,互不影响。并且这些内存区域是所有线程共享的。这里提到的栈和堆都是整体上的概念,这些堆栈还可以细分。

4.类的成员变量在不同对象中各不相同,都有自己的存储空间(成员变量在堆中的对象中)。而类的方法却是该类的所有对象共享的,只有一套,对象使用方法的时候方法才被压入栈,方法不使用则不占用内存。

以上分析只涉及了栈和堆,还有一个非常重要的内存区域:常量池,这个地方往往出现一些莫名其妙的问题。常量池是干嘛的上边已经说明了,也没必要理解多么深刻,只要记住它维护了一个已加载类的常量就可以了。接下来结合一些例子说明常量池的特性。

预备知识:

 

基本类型和基本类型的包装类。基本类型有:byteshortcharintlongboolean。基本类型的包装类分别是:ByteShortCharacterIntegerLongBoolean。注意区分大小写。二者的区别是:基本类型体现在程序中是普通变量,基本类型的包装类是类,体现在程序中是引用变量。因此二者在内存中的存储位置不同:基本类型存储在栈中,而基本类型包装类存储在堆中。上边提到的这些包装类都实现了常量池技术,另外两种浮点数类型的包装类则没有实现。另外,String类型也实现了常量池技术。

实例:

 

 

 

 

public class test {  
    public static void main(String[] args) {      
        objPoolTest();  
    }  
  
    public static void objPoolTest() {  
        int i = 40;  
        int i0 = 40;  
        Integer i1 = 40;  
        Integer i2 = 40;  
        Integer i3 = 0;  
        Integer i4 = new Integer(40);  
        Integer i5 = new Integer(40);  
        Integer i6 = new Integer(0);  
        Double d1=1.0;  
        Double d2=1.0;  
          
        System.out.println("i=i0\t" + (i == i0));  
        System.out.println("i1=i2\t" + (i1 == i2));  
        System.out.println("i1=i2+i3\t" + (i1 == i2 + i3));  
        System.out.println("i4=i5\t" + (i4 == i5));  
        System.out.println("i4=i5+i6\t" + (i4 == i5 + i6));      
        System.out.println("d1=d2\t" + (d1==d2));   
          
        System.out.println();          
    }  
}  

 

结果:

1.	i=i0    true  
2.	i1=i2   true  
3.	i1=i2+i3        true  
4.	i4=i5   false  
5.	i4=i5+i6        true  
6.	d1=d2   false

 

结果分析:

1.ii0均是普通类型(int)的变量,所以数据直接存储在栈中,而栈有一个很重要的特性:栈中的数据可以共享。当我们定义了int i = 40;,再定义int i0 = 40;这时候会自动检查栈中是否有40这个数据,如果有,i0会直接指向i40,不会再添加一个新的40

2.i1i2均是引用类型,在栈中存储指针,因为Integer是包装类。由于Integer包装类实现了常量池技术,因此i1i240均是从常量池中获取的,均指向同一个地址,因此i1=12

3.很明显这是一个加法运算,Java的数学运算都是在栈中进行的Java会自动对i1i2进行拆箱操作转化成整型,因此i1在数值上等于i2+i3

4.i4i5均是引用类型,在栈中存储指针,因为Integer是包装类。但是由于他们各自都是new出来的,因此不再从常量池寻找数据,而是从堆中各自new一个对象,然后各自保存指向对象的指针,所以i4i5不相等,因为他们所存指针不同,所指向对象不同。

5.这也是一个加法运算,和3同理。

6.d1d2均是引用类型,在栈中存储指针,因为Double是包装类。但Double包装类没有实现常量池技术,因此Doubled1=1.0;相当于Double d1=new Double(1.0);,是从堆new一个对象,d2同理。因此d1d2存放的指针不同,指向的对象不同,所以不相等。

小结:

1.以上提到的几种基本类型包装类均实现了常量池技术,但他们维护的常量仅仅是【-128127】这个范围内的常量,如果常量值超过这个范围,就会从堆中创建对象,不再从常量池中取。比如,把上边例子改成Integer i1 = 400; Integer i2 = 400;,很明显超过了127,无法从常量池获取常量,就要从堆中new新的Integer对象,这时i1i2就不相等了。

2.String类型也实现了常量池技术,但是稍微有点不同。String型是先检测常量池中有没有对应字符串,如果有,则取出来;如果没有,则把当前的添加进去。

凡是涉及内存原理,一般都是博大精深的领域,切勿听信一家之言,多读些文章。我在这只是浅析,里边还有很多猫腻,就留给读者探索思考了。希望本文能对大家有所帮助!

脚注:

(1) 符号引用,顾名思义,就是一个符号,符号引用被使用的时候,才会解析这个符号。如果熟悉linuxunix系统的,可以把这个符号引用看作一个文件的软链接,当使用这个软连接的时候,才会真正解析它,展开它找到实际的文件

对于符号引用,在类加载层面上讨论比较多,源码级别只是一个形式上的讨论。

当一个类被加载时,该类所用到的别的类的符号引用都会保存在常量池,实际代码执行的时候,首次遇到某个别的类时,JVM会对常量池的该类的符号引用展开,转为直接引用,这样下次再遇到同样的类型时,JVM就不再解析,而直接使用这个已经被解析过的直接引用。

除了上述的类加载过程的符号引用说法,对于源码级别来说,就是依照引用的解析过程来区别代码中某些数据属于符号引用还是直接引用,如,System.out.println("test" +"abc");//这里发生的效果相当于直接引用,而假设某个Strings = "abc"; System.out.println("test" + s);//这里的发生的效果相当于符号引用,即把s展开解析,也就相当于s"abc"的一个符号链接,也就是说在编译的时候,class文件并没有直接展看s,而把这个s看作一个符号,在实际的代码执行时,才会展开这个。

 

转自http://blog.csdn.net/shimiso/article/details/8595564

  • 大小: 30.5 KB
  • 大小: 68.3 KB
  • 大小: 65.2 KB
  • 大小: 67 KB
  • 大小: 69.5 KB
  • 大小: 71.7 KB
  • 大小: 44.8 KB
  • 大小: 74 KB
  • 大小: 76.9 KB
  • 大小: 80.6 KB
  • 大小: 74.2 KB
分享到:
评论

相关推荐

    Java内存分配浅析

    Java内存分配是Java编程中非常重要的概念,它涉及到程序运行时的数据存储和管理。Java程序在JVM(Java Virtual Machine,Java虚拟机)上运行,JVM作为一个平台无关的执行环境,负责Java程序的内存管理和执行。理解...

    Java内存分配全面浅析

    本文将由浅入深详细介绍Java内存分配的原理,以帮助新手更轻松的学习Java。这类文章网上有很多,但大多比较零碎。本文从认知过程角度出发,将带给读者一个系统的介绍。进入正题前首先要知道的是Java程序运行在JVM...

    Java类加载原理浅析

    总的来说,Java类加载原理是Java程序员进阶的必修课,它涉及到了JVM的内部运作机制,深入理解可以帮助我们更好地优化程序性能,解决一些棘手的问题,同时也能让我们对Java平台有更全面的认识。通过阅读相关文章和...

    C语言指针教学重点和难点问题浅析.pdf

    在动态内存分配和函数返回指针的情况下尤其重要。 6. **指针数组**:指针数组是一组指针,每个元素都可以指向不同类型的变量。这种结构常用于实现命令行参数解析或配置文件处理。 在教学过程中,以下几点是理解指针...

    SNS单模无芯光纤仿真与传感器结构特性分析——基于Rsoft beamprop模块

    内容概要:本文主要探讨了SNS单模无芯光纤的仿真分析及其在通信和传感领域的应用潜力。首先介绍了模间干涉仿真的重要性,利用Rsoft beamprop模块模拟不同模式光在光纤中的传播情况,进而分析光纤的传输性能和模式特性。接着讨论了光纤传输特性的仿真,包括损耗、色散和模式耦合等参数的评估。随后,文章分析了光纤的结构特性,如折射率分布、包层和纤芯直径对性能的影响,并探讨了镀膜技术对光纤性能的提升作用。最后,进行了变形仿真分析,研究外部因素导致的光纤变形对其性能的影响。通过这些分析,为优化光纤设计提供了理论依据。 适合人群:从事光纤通信、光学工程及相关领域的研究人员和技术人员。 使用场景及目标:适用于需要深入了解SNS单模无芯光纤特性和优化设计的研究项目,旨在提高光纤性能并拓展其应用场景。 其他说明:本文不仅提供了详细的仿真方法和技术细节,还对未来的发展方向进行了展望,强调了SNS单模无芯光纤在未来通信和传感领域的重要地位。

    发那科USM通讯程序socket-rece

    发那科USM通讯程序socket-set

    嵌入式八股文面试题库资料知识宝典-WIFI.zip

    嵌入式八股文面试题库资料知识宝典-WIFI.zip

    JS+HTML源码与image

    源码与image

    物流行业车辆路径优化:基于遗传算法和其他优化算法的MATLAB实现及应用

    内容概要:本文详细探讨了物流行业中路径规划与车辆路径优化(VRP)的问题,特别是针对冷链物流、带时间窗的车辆路径优化(VRPTW)、考虑充电桩的车辆路径优化(EVRP)以及多配送中心情况下的路径优化。文中不仅介绍了遗传算法、蚁群算法、粒子群算法等多种优化算法的理论背景,还提供了完整的MATLAB代码及注释,帮助读者理解这些算法的具体实现。此外,文章还讨论了如何通过MATLAB处理大量数据和复杂计算,以得出最优的路径方案。 适合人群:从事物流行业的研究人员和技术人员,尤其是对路径优化感兴趣的开发者和工程师。 使用场景及目标:适用于需要优化车辆路径的企业和个人,旨在提高配送效率、降低成本、确保按时交付货物。通过学习本文提供的算法和代码,读者可以在实际工作中应用这些优化方法,提升物流系统的性能。 其他说明:为了更好地理解和应用这些算法,建议读者参考相关文献和教程进行深入学习。同时,实际应用中还需根据具体情况进行参数调整和优化。

    嵌入式八股文面试题库资料知识宝典-C and C++ normal interview_8.doc.zip

    嵌入式八股文面试题库资料知识宝典-C and C++ normal interview_8.doc.zip

    基于灰狼优化算法的城市路径规划Matlab实现——解决TSP问题

    内容概要:本文介绍了基于灰狼优化算法(GWO)的城市路径规划优化问题(TSP),并通过Matlab实现了该算法。文章详细解释了GWO算法的工作原理,包括寻找猎物、围捕猎物和攻击猎物三个阶段,并提供了具体的代码示例。通过不断迭代优化路径,最终得到最优的城市路径规划方案。与传统TSP求解方法相比,GWO算法具有更好的全局搜索能力和较快的收敛速度,适用于复杂的城市环境。尽管如此,算法在面对大量城市节点时仍面临运算时间和参数设置的挑战。 适合人群:对路径规划、优化算法感兴趣的科研人员、学生以及从事交通规划的专业人士。 使用场景及目标:①研究和开发高效的路径规划算法;②优化城市交通系统,提升出行效率;③探索人工智能在交通领域的应用。 其他说明:文中提到的代码可以作为学习和研究的基础,但实际应用中需要根据具体情况调整算法参数和优化策略。

    嵌入式八股文面试题库资料知识宝典-Intel3.zip

    嵌入式八股文面试题库资料知识宝典-Intel3.zip

    嵌入式八股文面试题库资料知识宝典-2019京东C++.zip

    嵌入式八股文面试题库资料知识宝典-2019京东C++.zip

    嵌入式八股文面试题库资料知识宝典-北京光桥科技有限公司面试题.zip

    嵌入式八股文面试题库资料知识宝典-北京光桥科技有限公司面试题.zip

    物理学领域十字形声子晶体的能带与传输特性研究及应用

    内容概要:本文详细探讨了十字形声子晶体的能带结构和传输特性。首先介绍了声子晶体作为新型周期性结构在物理学和工程学中的重要地位,特别是十字形声子晶体的独特结构特点。接着从散射体的形状、大小、排列周期等方面分析了其对能带结构的影响,并通过理论计算和仿真获得了能带图。随后讨论了十字形声子晶体的传输特性,即它对声波的调控能力,包括传播速度、模式和能量分布的变化。最后通过大量实验和仿真验证了理论分析的正确性,并得出结论指出散射体的材料、形状和排列方式对其性能有重大影响。 适合人群:从事物理学、材料科学、声学等相关领域的研究人员和技术人员。 使用场景及目标:适用于希望深入了解声子晶体尤其是十字形声子晶体能带与传输特性的科研工作者,旨在为相关领域的创新和发展提供理论支持和技术指导。 其他说明:文中还对未来的研究方向进行了展望,强调了声子晶体在未来多个领域的潜在应用价值。

    嵌入式系统开发_USB主机控制器_Arduino兼容开源硬件_基于Mega32U4和MAX3421E芯片的USB设备扩展开发板_支持多种USB外设接入与控制的通用型嵌入式开发平台_.zip

    嵌入式系统开发_USB主机控制器_Arduino兼容开源硬件_基于Mega32U4和MAX3421E芯片的USB设备扩展开发板_支持多种USB外设接入与控制的通用型嵌入式开发平台_

    e2b8a-main.zip

    e2b8a-main.zip

    少儿编程scratch项目源代码文件案例素材-火柴人跑酷(2).zip

    少儿编程scratch项目源代码文件案例素材-火柴人跑酷(2).zip

    【HarmonyOS分布式技术】远程启动子系统详解:跨设备无缝启动与智能协同的应用场景及未来展望

    内容概要:本文详细介绍了HarmonyOS分布式远程启动子系统,该系统作为HarmonyOS的重要组成部分,旨在打破设备间的界限,实现跨设备无缝启动、智能设备选择和数据同步与连续性等功能。通过分布式软总线和分布式数据管理技术,它能够快速、稳定地实现设备间的通信和数据同步,为用户提供便捷的操作体验。文章还探讨了该系统在智能家居、智能办公和教育等领域的应用场景,展示了其在提升效率和用户体验方面的巨大潜力。最后,文章展望了该系统的未来发展,强调其在技术优化和应用场景拓展上的无限可能性。 适合人群:对HarmonyOS及其分布式技术感兴趣的用户、开发者和行业从业者。 使用场景及目标:①理解HarmonyOS分布式远程启动子系统的工作原理和技术细节;②探索该系统在智能家居、智能办公和教育等领域的具体应用场景;③了解该系统为开发者提供的开发优势和实践要点。 其他说明:本文不仅介绍了HarmonyOS分布式远程启动子系统的核心技术和应用场景,还展望了其未来的发展方向。通过阅读本文,用户可以全面了解该系统如何通过技术创新提升设备间的协同能力和用户体验,为智能生活带来新的变革。

    嵌入式八股文面试题库资料知识宝典-C and C++ normal interview_1.zip

    嵌入式八股文面试题库资料知识宝典-C and C++ normal interview_1.zip

Global site tag (gtag.js) - Google Analytics