JUnit源代码涉及使用了大量设计模式
1、模板方法模式(Template Method)
定义一个操作中的算法骨架,而将一些步骤延伸到子类中去,使得子类可以不改变一个算法的结构,即可重新定义该算法的某些特定步骤。这里需要复用的是算法的结构,也就是步骤,而步骤的实现可以在子类中完成。
使用场合:a)一次性实现一个算法的不变部分,并且将可变的行为留给子类来完成。b)各子类公共的行为应该被提取出来并集中到一个公共父类中以避免代码的重复。首先识别现有代码的不同之处,并且把不同部分分离为新的操作,最后,用一个调用这些新的操作的模板方法来替换这些不同的代码。c)控制子类的扩展
模板方法模式的组成:
—父类角色:提供模板
—子类角色:为模板提供实现
父类角色,必须是抽象类,定义特定的步骤:
public abstract class AbstractClass { public void template() { this.method1(); this.method2(); this.method3(); } public abstract void method1(); public abstract void method2(); public abstract void method3(); }
template()方法规定了具体的步骤,必须是先执行method1,在执行method2,最后method3
子类角色,为模板提供实现:
public class ConcreteClass extends AbstractClass { @Override public void method1() { System.out.println("step1"); } @Override public void method2() { System.out.println("step2"); } @Override public void method3() { System.out.println("step3"); } }
最后测试一下:
public class client { public static void main(String[] args) { AbstractClass ac = new ConcreteClass(); ac.template(); } }
在JUnit中对应上述三个方法的就是JUnit3中的setUp、testMethod(测试方法)、tearDown和JUnit4中的@Before、@Test、@After
JUnit3.8中的源代码:TestCase.java,其中的runBare()方法
public void runBare() throws Throwable { setUp(); try{ runTest(); } finally { tearDown(); } }
使用了模板方法模式。
2、适配器模式(Adapter)
在软件系统中,由于应用环境的变化,常常需要将“一些现存的对象”放在心的环境中应用,但是新环境要求的接口是这些现存对象所不满足的,那么如何应对这种“迁移的变化”?如何既能利用现有对象的良好实现,同时又能满足新的应用环境所要求的接口?这就是Adapter模式要解决的。
- 意图:将一个类的接口转换成客户希望的另外一个接口。Adapter模式使得原本由于接口不兼容而不能一起工作的那些类可以一起工作。
- 适配器(Adapter)模式的构成:
-目标抽象角色(Target)——定义客户要用的特定领域的接口
-适配器(Adapter)——调用另一个接口,作为一个转换器
-适配器(Adaptee)——定义一个接口,Adapter需要接入
-客户端(Client)——协同对象符合Adapter适配器
有三种类型的适配器模式:
-类适配器(采取继承的方式)
-对象适配器(采取对象组合的方式)——推荐使用
-缺省的适配器模式
适用性:
-对象需要利用现存的并且接口不兼容的类。
-需要创建可重用的类以协调其他接口可能不兼容的类
1)、采取继承的方式实现Adapter模式
举例:
public interface Target { public void method1(); } public class Adaptee { public void method2() { System.out.println("目标方法"); } } public class Adapter extends Adaptee implements Target { @Override public void method1() { this.method2(); } } public class Client { public static void main(String[] args) { Target target = new Adapter(); target.method1(); } }
注意Adapter类,他继承了现有类Adaptee并且实现了我们所要求的特定接口Target。
对于JUnit框架,适配模式体现在TestCase中的runTest()方法:
protected void runTest() throws Throwable { assertNotNull(fName); Method runMethod= null; try { // use getMethod to get all public inherited // methods. getDeclaredMethods returns all // methods of this class but excludes the // inherited ones. runMethod= getClass().getMethod(fName, null); } catch (NoSuchMethodException e) { fail("Method \""+fName+"\" not found"); } if (!Modifier.isPublic(runMethod.getModifiers())) { fail("Method \""+fName+"\" should be public"); } try { runMethod.invoke(this, new Class[0]); } catch (InvocationTargetException e) { e.fillInStackTrace(); throw e.getTargetException(); } catch (IllegalAccessException e) { e.fillInStackTrace(); throw e; } }
在runBare方法中,通过runTest方法将我们自己编写的testXXX方法进行了适配,使得JUnit可以执行我们编写的TestCase
在runTest方法中,首先获得我们自己编写的testXXX方法所对应的Method对象(不带参数),然后检查该Method所对应的方法是否是public的,如果是则调用Method对象的invoke方法来执行我们自己编写的testXXX方法。
2)、采取对象组合方式使用Adapter模式
举例:
public interface Target { public void method1(); } public class Adaptee { public void method2() { System.out.println("执行方法" ); } } public class Adapter implements Target { private Adaptee adaptee; public Adapter(Adaptee adaptee) { this.adaptee = adaptee; } @Override public void method1() { adaptee.method2(); } } public class Client { public static void main(String[] args) { Target target = new Adapter(new Adaptee()); target.method1(); } }
与继承方式不同处就在于Adapter。
3)、缺省的适配器模式(就是在AWT、Swing事件模型中使用的适配器模式)
举例:
public interface AbstractService { public void service1(); public void service2(); public void service3(); } public class ServiceAdapter implements AbstractService { @Override public void service1() { } @Override public void service2() { } @Override public void service3() { } } public class ConcreteService extends ServiceAdapter { @Override public void service1() { System.out.println("执行业务方法"); } }
AWT的举例:
import java.awt.Dimension; import java.awt.Frame; import java.awt.event.MouseEvent; import java.awt.event.MouseMotionAdapter; import java.awt.event.WindowAdapter; import java.awt.event.WindowEvent; public class AwtApp { public static void main(String[] args) { Frame frame = new Frame("title"); frame.addMouseMotionListener(new MouseMotionAdapter() { @Override public void mouseMoved(MouseEvent e) { System.out.println("x:" + e.getX() + "y:" + e.getY()); } }); frame.addWindowListener(new WindowAdapter() { @Override public void windowClosing(WindowEvent e) { System.out.println("close window"); System.exit(0); } }); frame.setSize(new Dimension(200,400)); frame.setVisible(true); } }
3、命令(Command)模式
JUnit是一个测试framework,测试人员只需要开发测试用例,然后把这些测试用例(TestCase)组成请求(可能是一个或多个),发送到JUnit执行,最后报告详细测试结果。其中包括执行的时间,错误方法,错误位置等。这样测试用例的开发人员就不需要知道JUnit内部的细节,只奥符合它定义的请求格式即可。从JUnit的角度考虑,他并不需要知道请求TestCase的具体操作信息,仅把它当做一种命令来执行,然后把执行测试结果发给测试人员。这样就使JUnit框架和TestCase的开发人员独立开来,使得请求的一方不必知道接收请求一方的详细信息,更不必知道是怎样被接收,以及怎样被执行的,实现系统的松耦合。
Command模式的意图是:将一个请求封装成一个对象,从而使你可用不同的请求对客户进行参数化;对请求进行排队或记录请求日志,Command模式告诉我们可以为一个操作生成一个对象并给出他的一个“excute(执行)”方法。
命令模式的构成:
1)客户角色:创建一个具体命令对象,并确定其接收者
2)命令角色:声明一个给所有具体命令类的抽象接口。这是一个抽象角色,通常由一个接口或抽象类实现
3)具体命令角色:定义一个接收者和行为之间的弱耦合,实现execute方法,负责调用接受者的相应操作
4)请求者角色:负责调用命令对象执行请求
5)接收者角色:负责具体实施和执行一个请求
public interface Command { public void execute(); } public class Receiver { public void doAction() { System.out.println("执行操作"); } } public class ConcreteCommand implements Command { private Receiver receiver; public ConcreteCommand(Receiver receiver) { this.receiver = receiver; } @Override public void execute() { receiver.doAction(); } } public class Invoker { private Command command; public Invoker(Command command) { this.command = command; } public void doInvokerAction() { command.execute(); } } public class Client { public static void main(String[] args) { Receiver receiver = new Receiver(); Command command = new ConcreteCommand(receiver); Invoker invoker = new Invoker(command); invoker.doInvokerAction(); } }
在命名模式下,最终的执行者是接收者(Receiver),它来执行操作,Receiver执行什么样的操作由具体命令(ConcreteCommand)来指出,具体命令的execute方法中指出了接受者要执行的动作(如果Receiver中包含不止一种方法,那么Command的execute可以指定调用哪一个方法,即receiver.doAction()),命令和接受者之间有弱耦合(通过具体命令ConcreteCommand中包含一个对接受者Receiver的引用),也就是说命令知道他最终的执行者是谁,那么命令怎样才能被执行呢(即谁来下达命令呢),这就是请求者(调用者)Invoker来做的工作,它与Command之间有一个弱耦合,Invoker调用command(也就是command的execute方法)。
4、组合(Composite)模式
组合模式有时又叫部分-整体模式,它使我们树型结构的问题中,模糊了简单元素和复杂元素的概念,客户程序可以像处理简单元素一样来处理复杂元素,从而使得客户程序与复杂元素的内部结构解耦。
意图:将对象组合成为树形结构以表示“部分-整体”的层次结构。Composite模式使得用户对单个对象和组合对象的使用具有一致性
组合对象的构成:
-Component(抽象构建接口):为组合的对象声明接口;在某些情况下实现从此接口派生出的所有类共有的默认行为;定义一个接口可以访问及管理它的多个子部件
-Leaf(叶部件):在组合中表示叶节点对象,叶节点没有子节点;定义组合中接口对象的行为
-Composite(组合类):定义有子节点(子部件)的部件的行为;存储子节点(子部件);在Component接口中实现与子部件相关的操作
-Client(客户端):通过Component接口控制组合部件的对象
1)、组合模式第一种实现
举例:
public interface Component { public void doSomething(); } public class Leaf implements Component { @Override public void doSomething() { System.out.println("执行方法"); } } import java.util.ArrayList; import java.util.List; public class Composite implements Component { private List<Component> list = new ArrayList<Component>(); public void add(Component component) { list.add(component); } public void remove(Component component) { list.remove(component); } public List<Component> getAll() { return this.list; } @Override public void doSomething() { for(Component component : list) { component.doSomething(); } } } public class Client { public static void main(String[] args) { Component leaf1 = new Leaf(); Component leaf2 = new Leaf(); Composite comp1 = new Composite(); comp1.add(leaf1); comp1.add(leaf2); Component leaf3 = new Leaf(); Component leaf4 = new Leaf(); Composite comp2 = new Composite(); comp2.add(comp1); comp2.add(leaf3); comp2.add(leaf4); comp2.doSomething(); } }
Leaf相当于我们写的TestCase,Composite相当于TestSuite
2)、组合模式第二种实现
举例:
将管理功能提升到接口里面,对Composite没有影响,对Leaf有影响,因为Leaf没有添加删除返回功能,所以空实现
import java.util.List; public interface Component { public void doSomething(); public void add(Component component); public void remove(Component component); public List<Component> getAll(); } import java.util.ArrayList; import java.util.List; public class Composite implements Component { private List<Component> list = new ArrayList<Component>(); @Override public void add(Component component) { list.add(component); } @Override public void doSomething() { for(Component component : list) { component.doSomething(); } } @Override public List<Component> getAll() { return this.list; } @Override public void remove(Component component) { list.remove(component); } } import java.util.List; public class Leaf implements Component { @Override public void add(Component component) { } @Override public void doSomething() { System.out.println("zhixing"); } @Override public List<Component> getAll() { return null; } @Override public void remove(Component component) { } }
组合模式有两种实现方式:
1)将管理子元素的方法定义在Composite类中;
2)将管理子元素的方法定义在Component接口中,这样Leaf类就需要对这些方法空实现。
5、JUnit中要区分错误(error)与失败(failure)
1)错误指的是代码中抛出了异常等影响代码正常执行的情况,比如抛出了ArrayIndexOutOfBoundsException,这叫做错误
2)失败指的是我们断言所期待的结果与程序实际执行的结果不一致,或者是直接调用了fail()方法,这叫失败
6、对于测试类来说,如果一个测试类中有5个测试方法,那么JUnit就会创建5个测试类的对象,每一个对象只会调用一个测试方法(为了符合命令模式的要求),在添加方法之前,需要首先判断测试方法是否满足public、void、no-arg、no-return这些条件,如果满足则添加到集合当中准备作为测试方法来去执行。
相关推荐
级联H桥SVG无功补偿系统在不平衡电网中的三层控制策略:电压电流双闭环PI控制、相间与相内电压均衡管理,级联H桥SVG无功补偿系统在不平衡电网中的三层控制策略:电压电流双闭环PI控制、相间与相内电压均衡管理,不平衡电网下的svg无功补偿,级联H桥svg无功补偿statcom,采用三层控制策略。 (1)第一层采用电压电流双闭环pi控制,电压电流正负序分离,电压外环通过产生基波正序有功电流三相所有H桥模块直流侧平均电压恒定,电流内环采用前馈解耦控制; (2)第二层相间电压均衡控制,注入零序电压,控制通过注入零序电压维持相间电压平衡; (3)第三层相内电压均衡控制,使其所有子模块吸收的有功功率与其损耗补,从而保证所有H桥子模块直流侧电压值等于给定值。 有参考资料。 639,核心关键词: 1. 不平衡电网下的SVG无功补偿 2. 级联H桥SVG无功补偿STATCOM 3. 三层控制策略 4. 电压电流双闭环PI控制 5. 电压电流正负序分离 6. 直流侧平均电压恒定 7. 前馈解耦控制 8. 相间电压均衡控制 9. 零序电压注入 10. 相内电压均衡控制 以上十个关键词用分号分隔的格式为:不
GTX 1080 PCB图纸,内含图纸查看软件
内容概要:本文档详细介绍了利用 DeepSeek 进行文本润色和问答交互时提高效果的方法和技巧,涵盖了从明确需求、提供适当上下文到尝试开放式问题以及多轮对话的十个要点。每一部分内容都提供了具体的示范案例,如指定回答格式、分步骤提问等具体实例,旨在指导用户更好地理解和运用 DeepSeek 提升工作效率和交流质量。同时文中还强调了根据不同应用场景调整提示词语气和风格的重要性和方法。 适用人群:适用于希望通过优化提问技巧以获得高质量反馈的企业员工、科研人员以及一般公众。 使用场景及目标:本文针对所有期望提高 DeepSeek 使用效率的人群,帮助他们在日常工作中快速获取精准的答案或信息,特别是在撰写报告、研究材料准备和技术咨询等方面。此外还鼓励用户通过不断尝试不同形式的问题表述来进行有效沟通。 其他说明:该文档不仅关注实际操作指引,同样重视用户思维模式转变——由简单索取答案向引导 AI 辅助创造性解决问题的方向发展。
基于FPGA与W5500实现的TCP网络通信测试平台开发——Zynq扩展口Verilog编程实践,基于FPGA与W5500芯片的TCP网络通信测试及多路Socket实现基于zynq开发平台和Vivado 2019软件的扩展开发,基于FPGA和W5500的TCP网络通信 测试平台 zynq扩展口开发 软件平台 vivado2019.2,纯Verilog可移植 测试环境 压力测试 cmd命令下ping电脑ip,同时采用上位机进行10ms发包回环测试,不丢包(内部数据回环,需要时间处理) 目前实现单socket功能,多路可支持 ,基于FPGA; W5500; TCP网络通信; Zynq扩展口开发; 纯Verilog可移植; 测试平台; 压力测试; 10ms发包回环测试; 单socket功能; 多路支持。,基于FPGA与W5500的Zynq扩展口TCP通信测试:可移植Verilog实现的高效网络通信
Labview液压比例阀伺服阀试验台多功能程序:PLC通讯、液压动画模拟、手动控制与调试、传感器标定、报警及记录、自动实验、数据处理与查询存储,报表生成与打印一体化解决方案。,Labview液压比例阀伺服阀试验台多功能程序:PLC通讯、液压动画模拟、手动控制与调试、传感器标定、报警管理及实验自动化,labview液压比例阀伺服阀试验台程序:功能包括,同PLC通讯程序,液压动画,手动控制及调试,传感器标定,报警设置及报警记录,自动实验,数据处理曲线处理,数据库存储及查询,报表自动生成及打印,扫码枪扫码及信号录入等~ ,核心关键词:PLC通讯; 液压动画; 手动控制及调试; 传感器标定; 报警设置及记录; 自动实验; 数据处理及曲线处理; 数据库存储及查询; 报表生成及打印; 扫码枪扫码。,Labview驱动的智能液压阀测试系统:多功能控制与数据处理
华为、腾讯、万科员工职业发展体系建设与实践.pptx
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
电网不对称故障下VSG峰值电流限制的柔性控制策略:实现电流平衡与功率容量的优化利用,电网不对称故障下VSG峰值电流限制的柔性控制策略:兼顾平衡电流与功率控制切换的动态管理,电网不对称故障下VSG峰值电流限制的柔性不平衡控制(文章完全复现)。 提出一种在不平衡运行条件下具有峰值电流限制的可变不平衡电流控制方法,可灵活地满足不同操作需求,包括电流平衡、有功或无功恒定运行(即电流控制、有功控制或无功控制之间的相互切),注入电流保持在安全值内,以更好的利用VSG功率容量。 关键词:VSG、平衡电流控制、有功功率控制、无功功率控制。 ,VSG; 峰值电流限制; 柔性不平衡控制; 电流平衡控制; 有功功率控制; 无功功率控制。,VSG柔性控制:在电网不对称故障下的峰值电流限制与平衡管理
1、文件内容:libpinyin-tools-0.9.93-4.el7.rpm以及相关依赖 2、文件形式:tar.gz压缩包 3、安装指令: #Step1、解压 tar -zxvf /mnt/data/output/libpinyin-tools-0.9.93-4.el7.tar.gz #Step2、进入解压后的目录,执行安装 sudo rpm -ivh *.rpm 4、更多资源/技术支持:公众号禅静编程坊
数据集是一个以经典动漫《龙珠》为主题的多维度数据集,广泛应用于数据分析、机器学习和图像识别等领域。该数据集由多个来源整合而成,涵盖了角色信息、战斗力、剧情片段、台词以及角色图像等多个方面。数据集的核心内容包括: 角色信息:包含《龙珠》系列中的主要角色及其属性,如名称、种族、所属系列(如《龙珠》《龙珠Z》《龙珠超》等)、战斗力等级等。 图像数据:提供角色的图像资源,可用于图像分类和角色识别任务。这些图像来自动画剧集、漫画和相关衍生作品。 剧情与台词:部分数据集还包含角色在不同故事中的台词和剧情片段,可用于文本分析和自然语言处理任务。 战斗数据:记录角色在不同剧情中的战斗力变化和战斗历史,为研究角色成长和剧情发展提供支持。 数据集特点 多样性:数据集整合了角色、图像、文本等多种类型的数据,适用于多种研究场景。 深度:不仅包含角色的基本信息,还涵盖了角色的成长历程、技能描述和与其他角色的互动关系。 实用性:支持多种编程语言(如Python、R)的数据处理和分析,提供了详细的文档和示例代码。
基于protues仿真的多功公交站播报系统设计(仿真图、源代码) 该设计为基于protues仿真的多功公交站播报系统,实现温度显示、时间显示、和系统公交站播报功能; 具体功能如下: 1、系统使用51单片机为核心设计; 2、时钟芯片进行时间和日期显示; 3、温度传感器进行温度读取; 4、LCD12864液晶屏进行相关显示; 5、按键设置调节时间; 6、按键设置报站; 7、仿真图、源代码; 操作说明: 1、下行控制报站:首先按下(下行设置按键),(下行指示灯)亮,然后按下(手动播报)按键控制播报下一站; 2、上行控制报站:首先按上(上行设置按键),(上行指示灯)亮,然后按下(手动播报)按键控制播报下一站; 3、按下关闭播报按键,则关闭播报功能和清除显示
采用Java后台技术和MySQL数据库,在前台界面为提升用户体验,使用Jquery、Ajax、CSS等技术进行布局。 系统包括两类用户:学生、管理员。 学生用户 学生用户只要实现了前台信息的查看,打开首页,查看网站介绍、琴房信息、在线留言、轮播图信息公告等,通过点击首页的菜单跳转到对应的功能页面菜单,包括网站首页、琴房信息、注册登录、个人中心、后台登录。 学生用户通过账户账号登录,登录后具有所有的操作权限,如果没有登录,不能在线预约。学生用户退出系统将注销个人的登录信息。 管理员通过后台的登录页面,选择管理员权限后进行登录,管理员的权限包括轮播公告管理、老师学生信息管理和信息审核管理,管理员管理后点击退出,注销登录信息。 管理员用户具有在线交流的管理,琴房信息管理、琴房预约管理。 在线交流是对前台用户留言内容进行管理,删除留言信息,查看留言信息。
MATLAB可以用于开发人脸识别考勤系统。下面是一个简单的示例流程: 1. 数据采集:首先收集员工的人脸图像作为训练数据集。可以要求员工提供多张照片以获得更好的训练效果。 2. 图像预处理:使用MATLAB的图像处理工具对采集到的人脸图像进行预处理,例如灰度化、裁剪、缩放等操作。 3. 特征提取:利用MATLAB的人脸识别工具包,如Face Recognition Toolbox,对处理后的图像提取人脸特征,常用的方法包括主成分分析(PCA)和线性判别分析(LDA)等。 4. 训练模型:使用已提取的人脸特征数据集训练人脸识别模型,可以选择支持向量机(SVM)、卷积神经网络(CNN)等算法。 5. 考勤系统:在员工打卡时,将摄像头捕获的人脸图像输入到训练好的模型中进行识别,匹配员工信息并记录考勤数据。 6. 结果反馈:根据识别结果,可以自动生成考勤报表或者实时显示员工打卡情况。 以上只是一个简单的步骤,实际开发过程中需根据具体需求和系统规模进行定制和优化。MATLAB提供了丰富的图像处理和机器学习工具,是开发人脸识别考勤系统的一个很好选择。
hjbvbnvhjhjg
HCIP、软考相关学习PPT提供下载
绿豆BOX UI8版:反编译版六个全新UI+最新后台直播管理源码 最新绿豆BOX反编译版六个UI全新绿豆盒子UI8版本 最新后台支持直播管理 作为UI6的升级版,UI8不仅修复了前一版本中存在的一些BUG,还提供了6套不同的UI界面供用户选择,该版本有以下特色功能: 在线管理TVBOX解析 在线自定义TVBOX 首页布局批量添加会员信息 并支持导出批量生成卡密 并支持导出直播列表管理功能
vue3的一些语法以及知识点
西门子大型Fanuc机器人汽车焊装自动生产线程序经典解析:PLC博图编程与MES系统通讯实战指南,西门子PLC博图汽车焊装自动生产线FANUC机器人程序经典结构解析与MES系统通讯,西门子1500 大型程序fanuc 机器人汽车焊装自动生产线程序 MES 系统通讯 大型程序fanuc机器人汽车焊装自动生产线程序程序经典结构清晰,SCL算法堆栈,梯形图和 SCL混编使用博图 V14以上版本打开 包括: 1、 PLC 博图程序 2 触摸屏程序 ,西门子1500; 大型程序; fanuc机器人; 汽车焊装自动生产线; MES系统通讯; SCL算法; 梯形图; SCL混编; 博图V14以上版本。,西门子博图大型程序:汽车焊装自动生产线MES系统通讯与机器人控制
DeepSeek:从入门到精通
计及信息间隙决策与多能转换的综合能源系统优化调度模型:实现碳经济最大化与源荷不确定性考量,基于信息间隙决策与多能转换的综合能源系统优化调度模型:源荷不确定性下的高效碳经济调度策略,计及信息间隙决策及多能转的综合能源系统优化调度 本代码构建了含风电、光伏、光热发电系统、燃气轮机、燃气锅炉、电锅炉、储气、储电、储碳、碳捕集装置的综合能源系统优化调度模型,并考虑P2G装置与碳捕集装置联合运行,从而实现碳经济的最大化,最重要的是本文引入了信息间隙决策理论考虑了源荷的不确定性(本代码的重点)与店铺的47代码形成鲜明的对比,注意擦亮眼睛,认准原创,该代码非常适合修改创新,,提供相关的模型资料 ,计及信息间隙决策; 综合能源系统; 优化调度; 多能转换; 碳经济最大化; 风电; 光伏; 燃气轮机; 储气; 储电; 储碳; 碳捕集装置; P2G装置联合运行; 模型资料,综合能源系统优化调度模型:基于信息间隙决策和多能转换的原创方案