package org.ks4j.utils;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import org.hibernate.Criteria;
import org.hibernate.Query;
import org.hibernate.Session;
import org.hibernate.criterion.CriteriaSpecification;
import org.hibernate.criterion.Criterion;
import org.hibernate.criterion.Disjunction;
import org.hibernate.criterion.MatchMode;
import org.hibernate.criterion.Order;
import org.hibernate.criterion.Projection;
import org.hibernate.criterion.Projections;
import org.hibernate.criterion.Restrictions;
import org.hibernate.impl.CriteriaImpl;
import org.hibernate.transform.ResultTransformer;
import org.ks4j.orm.Compositor;
import org.ks4j.orm.Filtration;
import org.ks4j.orm.PageData;
import org.ks4j.orm.Filtration.MatchType;
import org.ks4j.orm.Compositor.CompositorType;
import org.ks4j.utils.ReflectionUtils;
import org.springframework.util.Assert;
/**
* hibernate工具类
*
*
*/
public class HibernateUtils
{
/**
* 根据Criterion条件创建Criteria.
*/
public static Criteria createCriteria(Session session, Class entityClass, Criterion... criterions)
{
Criteria criteria = session.createCriteria(entityClass);
for (Criterion criterion : criterions)
{
criteria.add(criterion);
}
return criteria;
}
/**
* 根据查询HQL与参数列表创建Query对象.
*/
public static Query createQuery(Session session, String hql, Object... values)
{
Assert.hasText(hql, "hql不能为空");
Query query = session.createQuery(hql);
for (int i = 0; i < values.length; i++)
{
query.setParameter(i, values[i]);
}
return query;
}
/**
* 根据查询HQL与参数列表创建Query对象.
*/
public static Query createQuery(Session session, String hql, Map<String, ?> values)
{
Assert.hasText(hql, "hql不能为空");
Query query = session.createQuery(hql);
if (values != null)
{
query.setProperties(values);
}
return query;
}
/**
* 创建Criterion
*/
private static Criterion createCriterion(String fieldName, Object fieldValue, MatchType matchType)
{
Criterion criterion = null;
Assert.hasText(fieldName, "fieldName不能为空");
switch (matchType)
{
case EQ: // =
criterion = Restrictions.eq(fieldName, fieldValue);
break;
case LIKE: // like
criterion = Restrictions.like(fieldName, (String) fieldValue, MatchMode.ANYWHERE);
break;
case LT: // <
criterion = Restrictions.lt(fieldName, fieldValue);
break;
case LE: // <=
criterion = Restrictions.le(fieldName, fieldValue);
break;
case GT: // >
criterion = Restrictions.gt(fieldName, fieldValue);
break;
case GE: // >=
criterion = Restrictions.ge(fieldName, fieldValue);
break;
}
return criterion;
}
/**
* 执行count查询获得本次Criteria查询所能获得的对象总数.
*/
@SuppressWarnings("unchecked")
private static long countCriteriaResult(Criteria criteria)
{
CriteriaImpl impl = (CriteriaImpl) criteria;
// 先把Projection、ResultTransformer、OrderBy取出来,清空三者后再执行Count操作
Projection projection = impl.getProjection();
ResultTransformer resultTransformer = impl.getResultTransformer();
List<CriteriaImpl.OrderEntry> orderEntries = null;
orderEntries = (List) ReflectionUtils.getFieldValue(impl, "orderEntries");
ReflectionUtils.setFieldValue(impl, "orderEntries", new ArrayList());
// 执行Count查询
long totalCount = (Long) criteria.setProjection(Projections.rowCount()).uniqueResult();
// 将之前的Projection,ResultTransformer和OrderBy条件重新设回去
criteria.setProjection(projection);
if (projection == null)
{
criteria.setResultTransformer(CriteriaSpecification.ROOT_ENTITY);
}
if (resultTransformer != null)
{
criteria.setResultTransformer(resultTransformer);
}
ReflectionUtils.setFieldValue(impl, "orderEntries", orderEntries);
return totalCount;
}
/**
* 设置排序参数到Criteria对象
*/
public static Criteria setCompositorParameter(Criteria criteria, Compositor compositor)
{
if (compositor != null)
{
String fieldName = compositor.getFieldName();
CompositorType compositorType = compositor.getCompositorType();
switch (compositorType)
{
case ASC:
criteria.addOrder(Order.asc(fieldName));
break;
case DESC:
criteria.addOrder(Order.desc(fieldName));
break;
}
}
return criteria;
}
/**
* 设置过滤条件到Criteria对象
*/
public static Criteria setFiltrationParameter(Criteria criteria, Filtration... filtrations)
{
if (filtrations.length > 0)
{
List<Criterion> criterions = new ArrayList<Criterion>();
for (Filtration filtration : filtrations)
{
Criterion criterion = null;
if (!filtration.isMultiFilter())
{
criterion = createCriterion(filtration.getFieldName(), filtration.getFieldValue(), filtration.getMatchType());
criterions.add(criterion);
} else
{
//包含多个属性需要比较的情况,进行or处理.
Disjunction disjunction = Restrictions.disjunction();
for (String filedName : filtration.getFieldNames())
{
criterion = createCriterion(filedName, filtration.getFieldValue(), filtration.getMatchType());
disjunction.add(criterion);
}
criterions.add(disjunction);
}
}
for (Criterion criterion : criterions)
{
criteria.add(criterion);
}
}
return criteria;
}
/**
* 设置过滤条件到Criteria对象
*/
public static Criteria setFiltrationParameter(Criteria criteria, List<Filtration> filtrationList)
{
if (filtrationList != null)
{
//Filtration[] filtrations = (Filtration[]) filtrationList.toArray();
Filtration[] filtrations = new Filtration[filtrationList.size()];
for(int i =0;i<filtrationList.size();i++)
{
filtrations[i] = filtrationList.get(i);
}
return setFiltrationParameter(criteria, filtrations);
} else
{
return criteria;
}
}
/**
* 设置分页参数到Criteria对象
*/
public static Criteria setParameter(Criteria criteria, PageData<?> pageData)
{
//第一步:设置查询条件
setFiltrationParameter(criteria, pageData.getFiltrations());
//第二步:读取记录总数
if (pageData.getPagination().isReadTotalCount())
{
long totalCount = countCriteriaResult(criteria);
pageData.getPagination().setTotalCount(totalCount);
}
//第三步:设置查询范围
criteria.setFirstResult(pageData.getPagination().getCurrentlyPageFirstResoultIndex());
criteria.setMaxResults(pageData.getPagination().getPageSize());
//排序条件
setCompositorParameter(criteria, pageData.getCompositor());
return criteria;
}
}
分享到:
相关推荐
当两者结合使用时,可以形成强大的企业级应用解决方案,尤其在构建BBS(Bulletin Board System,电子公告板系统)这样的交互性强、数据量大的应用时,这种结合显得尤为重要。 在"struts与hibernate结合的BBS系统"中...
在实际的Open Session In View(OSIV)模式中,Session通常在Controller(或Interceptor)层打开,贯穿整个请求过程,直到响应发送后关闭,这样可以确保在视图层也能访问到新鲜的数据,避免了延迟加载的问题。...
工具类`HibernateUtils`就展示了这样的设计,它包含了静态的`Configuration`和`SessionFactory`变量,以及一个静态初始化块来加载配置文件并创建SessionFactory。开发人员可以通过`getSessionFactory()`方法获取...
【项目资源】: 物联网项目适用于从基础到高级的各种项目,特别是在性能要求较高的场景中,比如操作系统开发、嵌入式编程和底层系统编程。如果您是初学者,可以从简单的控制台程序开始练习;如果是进阶开发者,可以尝试涉及硬件或网络的项目。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。
【项目资源】: 适用于从基础到高级的各种项目,特别是在性能要求较高的场景中,比如操作系统开发、嵌入式编程和底层系统编程。如果您是初学者,可以从简单的控制台程序开始练习;如果是进阶开发者,可以尝试涉及硬件或网络的项目。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。
# 基于Python的KMeans和EM算法结合图像分割项目 ## 项目简介 本项目结合KMeans聚类和EM(期望最大化)算法,实现对马赛克图像的精准分割。通过Gabor滤波器提取图像的多维特征,并利用KMeans进行初步聚类,随后使用EM算法优化聚类结果,最终生成高质量的分割图像。 ## 项目的主要特性和功能 1. 图像导入和预处理: 支持导入马赛克图像,并进行灰度化、滤波等预处理操作。 2. 特征提取: 使用Gabor滤波器提取图像的多维特征向量。 3. 聚类分析: 使用KMeans算法对图像进行初步聚类。 利用KMeans的聚类中心初始化EM算法,进一步优化聚类结果。 4. 图像生成和比较: 生成分割后的图像,并与原始图像进行比较,评估分割效果。 5. 数值比较: 通过计算特征向量之间的余弦相似度,量化分割效果的提升。 ## 安装使用步骤 ### 假设用户已经下载了项目的源码文件 1. 环境准备:
HCIP第一次作业:静态路由综合实验
【项目资源】: 单片机项目适用于从基础到高级的各种项目,特别是在性能要求较高的场景中,比如操作系统开发、嵌入式编程和底层系统编程。如果您是初学者,可以从简单的控制台程序开始练习;如果是进阶开发者,可以尝试涉及硬件或网络的项目。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。
内容概要:本文详细介绍了Johnson-SU分布的参数计算与优化过程,涵盖位置参数γ、形状参数δ、尺度参数ξ和伸缩参数λ的计算方法,并实现了相应的Python代码。文中首先导入必要的库并设置随机种子以确保结果的可复现性。接着,分别定义了四个参数的计算函数,其中位置参数γ通过加权平均值计算,形状参数δ基于局部均值和标准差的比值,尺度参数ξ结合峰度和绝对偏差,伸缩参数λ依据偏态系数。此外,还实现了Johnson-SU分布的概率密度函数(PDF),并使用负对数似然函数作为目标函数,采用L-BFGS-B算法进行参数优化。最后,通过弹性网络的贝叶斯优化展示了另一种参数优化方法。; 适合人群:具有Python编程基础,对统计学和机器学习有一定了解的研究人员或工程师。; 使用场景及目标:①需要对复杂数据分布进行建模和拟合的场景;②希望通过优化算法提升模型性能的研究项目;③学习如何实现和应用先进的统计分布及优化技术。; 阅读建议:由于涉及较多数学公式和编程实现,建议读者在阅读时结合相关数学知识,同时动手实践代码,以便更好地理解和掌握Johnson-SU分布及其优化方法。
TSP问题的3种智能优化方法求解(研究生课程《智能优化算法》结课大作业).zip
【项目资源】: 物联网项目适用于从基础到高级的各种项目,特别是在性能要求较高的场景中,比如操作系统开发、嵌入式编程和底层系统编程。如果您是初学者,可以从简单的控制台程序开始练习;如果是进阶开发者,可以尝试涉及硬件或网络的项目。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。
【项目资源】: 单片机项目适用于从基础到高级的各种项目,特别是在性能要求较高的场景中,比如操作系统开发、嵌入式编程和底层系统编程。如果您是初学者,可以从简单的控制台程序开始练习;如果是进阶开发者,可以尝试涉及硬件或网络的项目。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。
自动发布Java项目(Tomcat)Shell脚本
# 基于webpack和Vue的前端项目构建方案 ## 项目简介 本项目是基于webpack和Vue构建的前端项目方案,借助webpack强大的打包能力以及Vue的开发特性,可用于快速搭建现代化的前端应用。项目不仅完成了基本的webpack与Vue的集成配置,还在构建速度优化和代码规范性方面做了诸多配置。 ## 项目的主要特性和功能 1. 打包功能运用webpack进行模块打包,支持将scss转换为css,借助babel实现语法转换。 2. Vue开发支持集成Vue框架,能使用Vue单文件组件的开发模式。 3. 构建优化采用threadloader实现多进程打包,cacheloader缓存资源,极大提高构建速度开启热更新功能,开发更高效。 4. 错误处理与优化提供不同环境下的错误映射配置,便于定位错误利用webpackbundleanalyzer分析打包体积。
Hands-On Large Language Models - Jay Alammar 袋鼠书 《动手学大语言模型》PDF
资源内项目源码是来自个人的毕业设计,代码都测试ok,包含源码、数据集、可视化页面和部署说明,可产生核心指标曲线图、混淆矩阵、F1分数曲线、精确率-召回率曲线、验证集预测结果、标签分布图。都是运行成功后才上传资源,毕设答辩评审绝对信服的保底85分以上,放心下载使用,拿来就能用。包含源码、数据集、可视化页面和部署说明一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.txt文件,仅供学习参考, 切勿用于商业用途。
# 基于Arduino Feather M0和Raspberry Pi的传感器数据采集与监控系统 ## 项目简介 本项目是一个基于Arduino Feather M0和Raspberry Pi的传感器数据采集与监控系统。系统通过Arduino Feather M0采集传感器数据,并通过WiFi将数据传输到Raspberry Pi。Raspberry Pi运行BalenaOS,集成了MySQL、PHP、NGINX、Apache和Grafana等工具,用于数据的存储、处理和可视化。项目适用于环境监测、物联网设备监控等场景。 ## 项目的主要特性和功能 1. 传感器数据采集使用Arduino Feather M0和AM2315传感器采集温度和湿度数据。 2. WiFi数据传输Arduino Feather M0通过WiFi将采集到的数据传输到Raspberry Pi。
资源内项目源码是来自个人的毕业设计,代码都测试ok,包含源码、数据集、可视化页面和部署说明,可产生核心指标曲线图、混淆矩阵、F1分数曲线、精确率-召回率曲线、验证集预测结果、标签分布图。都是运行成功后才上传资源,毕设答辩评审绝对信服的保底85分以上,放心下载使用,拿来就能用。包含源码、数据集、可视化页面和部署说明一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.txt文件,仅供学习参考, 切勿用于商业用途。
【项目资源】: 适用于从基础到高级的各种项目,特别是在性能要求较高的场景中,比如操作系统开发、嵌入式编程和底层系统编程。如果您是初学者,可以从简单的控制台程序开始练习;如果是进阶开发者,可以尝试涉及硬件或网络的项目。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。
【项目资源】: 物联网项目适用于从基础到高级的各种项目,特别是在性能要求较高的场景中,比如操作系统开发、嵌入式编程和底层系统编程。如果您是初学者,可以从简单的控制台程序开始练习;如果是进阶开发者,可以尝试涉及硬件或网络的项目。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。