前言
多线程的价值无需赘述,对于App性能和用户体验都有着至关重要的意义,在iOS开发中,Apple提供了不同的技术支持多线程编程,除了跨平台的pthread之外,还提供了NSThread、NSOperationQueue、GCD等多线程技术,从本篇Blog开始介绍这几种多线程技术的细节。
对于pthread这种跨平台的多线程技术,这本Programming with POSIX Threads做了详细介绍,不再提及。
NSThread
使用NSThead创建线程有很多方法:
- +detachNewThreadSelector:toTarget:withObject:类方法直接生成一个子线程
1
|
|
- 创建一个NSThread类实例,然后调用start方法。
1 2 |
|
- 调用NSObject的
+performSelectorInBackground:withObject:
方法生成子线程。
1
|
|
- 创建一个NSThread子类,然后调用子类实例的start方法,。
创建线程也是有开销的,iOS下主要成本包括构造内核数据结构(大约1KB)、栈空间(子线程512KB、主线程1MB,不过可以使用方法-setStackSize:
自己设置,注意必须是4K的倍数,而且最小是16K),创建线程大约需要90毫秒的创建时间。
第二种和第四种方法创建的线程有个好处是拥有线程的对象,因此可以使用performSelector:onThread:withObject:waitUntilDone:
在该线程上执行方法,这是一种非常方便的线程间通讯的方法(相对于设置麻烦的NSPort用于通讯),所要执行的方法可以直接添加到目标线程的Runloop中执行。Apple建议使用这个接口运行的方法不要是耗时或者频繁的操作,以免子线程的负载过重。
第三种方法其实与第一种方法是一样的,都会直接生成一个子线程。
上面四种方法生成的子线程都是detached状态,即主线程结束时这些线程都会被直接杀死;如果要生成joinable状态的子线程,只能使用pthread接口啦。
如果需要,可以设置线程的优先级(-setThreadPriority:
);如果要在线程中保存一些状态信息,还可以使用到-threadDictionary
得到一个NSMutableDictionary,以key-value的方式保存信息用于线程内读写。
NSThread的入口方法
要写一个有效的子线程入口方法需要注意很多问题,示例代码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |
|
- 必须创建一个NSAutoreleasePool,因为子线程不会自动创建。同时要注意这个pool因为是最外层pool,如果线程中要进行长时间的操作生成大量autoreleased的对象,则只有在该子线程退出时才会回收,因此如果线程中会大量创建autoreleased对象,那么需要创建额外的NSAutoreleasePool,可以在NSRunloop每次迭代时创建和销毁一个NSAutoreleasePool。
- 如果你的子线程会抛出异常,最好在子线程中设置一个异常处理函数,因为如果子线程无法处理抛出的异常,会导致程序直接Crash关闭。
- (可选)设置Run Loop,如果子线程只是做个一次性的操作,那么无需设置Run Loop;如果子线程进入一个循环需要不断处理一些事件,那么设置一个Run Loop是最好的处理方式,如果需要Timer,那么Run Loop就是必须的。
- 如果需要在子线程运行的时候让子线程结束操作,子线程每次Run Loop迭代中检查相应的标志位来判断是否还需要继续执行,可以使用threadDictionary以及设置Input Source的方式来通知这个子线程。那么什么是Run Loop呢?这是涉及NSThread及线程相关的编程时无法回避的一个问题。
Run Loop
Run Loop本身并不具备并发执行的功能,但是和多线程开发息息相关,而且概念令人迷惑,相关的介绍资料也很少,它的主要的特性如下:
- 每个线程都有一个Run Loop,主线程的Run Loop会在App运行时自动运行,子线程中需要手动运行。
- 每个Run Loop都会以一个模式mode来运行,可以使用NSRunLoop的
- (BOOL)runMode:(NSString *)mode beforeDate:(NSDate *)limitDate
方法运行在某个特定模式mode。 - Run Loop的处理两大类事件源:Timer Source和Input Source(包括performSelector***方法簇、Port或者自定义Input Source),每个事件源都会绑定在Run Loop的某个特定模式mode上,而且只有RunLoop在这个模式运行的时候才会触发该Timer和Input Source。
- 如果没有任何事件源添加到Run Loop上,Run Loop就会立刻exit。
Run Loop接口
要操作Run Loop,Foundation层和Core Foundation层都有对应的接口可以操作Run Loop。
Foundation层对应的是NSRunLoop:
Core Foundation层对应的是CFRunLoopRef:
两组接口差不多,不过功能上还是有许多区别的,例如CF层可以添加自定义Input Source事件源(CFRunLoopSourceRef)和Run Loop观察者Observer(CFRunLoopObserverRef),很多类似功能的接口特性也是不一样的。
Run Loop运行
Run Loop如何运行呢?在上一节NSThread的入口函数中使用了一种NSRunLoop的使用场景,再看一例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |
|
我们看到入口方法里创建了一个NSTimer,并且以NSDefaultRunLoopMode模式加入到当前子线程的NSRunLoop中。进入循环后肯定会执行-doOtherTask
方式法一次,然后再以NSDefaultRunLoopMode模式运行NSRunLoop,如果一次Timer事件触发处理后,这个Run Loop会返回吗?答案是不会,Why?
NSRunLoop的底层是由CFRunLoopRef实现的,你可以想象成一个循环或者类似Linux下select或者epoll,当没有事件触发时,你调用的Run Loop运行方法不会立刻返回,它会持续监听其他事件源,如果需要Run Loop会让子线程进入sleep等待状态而不是空转,只有当Timer Source或者Input Source事件发生时,子线程才会被唤醒,然后处理触发的事件,然而由于Timer source比较特殊,Timer Source事件发生处理后,Run Loop运行方法- (BOOL)runMode:(NSString *)mode beforeDate:(NSDate *)limitDate;
也不会返回;而其他非Timer事件的触发处理会让这个Run Loop退出并返回YES。当Run Loop运行在一个特定模式时,如果该模式下没有事件源,运行Run Loop会立刻返回NO。
NSRunLoop的运行接口:
1 2 3 4 5 6 7 8 |
|
CFRunLoopRef的运行接口:
1 2 3 4 5 6 7 8 9 10 11 |
|
详细讲解下NSRunLoop的三个运行接口:
-
- (void)run;
无条件运行
不建议使用,因为这个接口会导致Run Loop永久性的运行在NSDefaultRunLoopMode模式,即使使用CFRunLoopStop(runloopRef);
也无法停止Run Loop的运行,那么这个子线程就无法停止,只能永久运行下去。
-
- (void)runUntilDate:(NSDate *)limitDate;
有一个超时时间限制
比上面的接口好点,有个超时时间,可以控制每次Run Loop的运行时间,也是运行在NSDefaultRunLoopMode模式。这个方法运行Run Loop一段时间会退出给你检查运行条件的机会,如果需要可以再次运行Run Loop。注意CFRunLoopStop(runloopRef);
也无法停止Run Loop的运行,因此最好自己设置一个合理的Run Loop运行时间。示例:
1 2 3 4 5 6 |
|
-
- (BOOL)runMode:(NSString *)mode beforeDate:(NSDate *)limitDate;
有一个超时时间限制,而且设置运行模式
这个接口在非Timer事件触发、显式的用CFRunLoopStop停止Run Loop、到达limitDate后会退出返回。如果仅是Timer事件触发并不会让Run Loop退出返回;如果是PerfromSelector***事件或者其他Input Source事件触发处理后,Run Loop会退出返回YES。示例:
1 2 3 4 5 6 |
|
那么如何知道一个Run Loop是因为什么原因exit退出的呢?NSRunLoop中没有接口可以知道,而需要通过Core Foundation的接口来运行CFRunLoopRef,NSRunLoop其实就是CFRunLoopRef的二次封装。使用CFRunLoop的接口(C的接口)来运行Run Loop,有两个接口:
void CFRunLoopRun(void);
运行在默认的kCFRunLoopDefaultMode模式下,直到使用CFRunLoopStop接口停止这个Run Loop,或者Run Loop的所有事件源都被删除。
SInt32 CFRunLoopRunInMode(CFStringRef mode, CFTimeInterval seconds, Boolean returnAfterSourceHandled);
第一个参数是指RunLoop运行的模式(例如kCFRunLoopDefaultMode或者kCFRunLoopCommonModes),第二个参数是运行时间,第三个参数是是否在处理事件后让Run Loop退出返回。 示例:
1 2 3 4 5 6 7 8 9 10 11 |
|
如果Run Loop退出返回后,返回值是SInt32类型(signed long),表明Run Loop返回的原因,目前有四种:
1 2 3 4 5 6 |
|
注意:Run Loop是可以嵌套调用的(就像NSAutoreleasePool),例如一个Run Loop运行过程中一个事件触发后,那么在触发方法里可以再运行当前子线程的Run Loop,然后由这个Run Loop等待其他事件触发。不过这种嵌套Run Loop调用方式我用的比较少。
以上Run Loop运行方法参考本文最后的Sample Code自行尝试。
Run Loop的运行模式Mode
iOS下Run Loop的主要运行模式mode有:
1) NSDefaultRunLoopMode: 默认的运行模式,除了NSConnection对象的事件。
2) NSRunLoopCommonModes: 是一组常用的模式集合,将一个input source关联到这个模式集合上,等于将input source关联到这个模式集合中的所有模式上。在iOS系统中NSRunLoopCommonMode包含NSDefaultRunLoopMode、NSTaskDeathCheckMode、UITrackingRunLoopMode,我有个timer要关联到这些模式上,一个个注册很麻烦,我可以用CFRunLoopAddCommonMode([[NSRunLoop currentRunLoop] getCFRunLoop],(__bridge CFStringRef) NSEventTrackingRunLoopMode)
将NSEventTrackingRunLoopMode或者其他模式添加到这个NSRunLoopCommonModes模式中,然后只需要将Timer关联到NSRunLoopCommonModes,即可以实现Run Loop运行在这个模式集合中任何一个模式时,这个Timer都可以被触发。默认情况下NSRunLoopCommonModes包含了NSDefaultRunLoopMode和UITrackingRunLoopMode。注意:让Run Loop运行在NSRunLoopCommonModes下是没有意义的,因为一个时刻Run Loop只能运行在一个特定模式下,而不可能是个模式集合。
3) UITrackingRunLoopMode: 用于跟踪触摸事件触发的模式(例如UIScrollView上下滚动),主线程当触摸事件触发时会设置为这个模式,可以用来在控件事件触发过程中设置Timer。
4) GSEventReceiveRunLoopMode: 用于接受系统事件,属于内部的Run Loop模式。
5) 自定义Mode:可以设置自定义的运行模式Mode,你也可以用CFRunLoopAddCommonMode添加到NSRunLoopCommonModes中。
Run Loop运行时只能以一种固定的模式运行,只会监控这个模式下添加的Timer Source和Input Source,如果这个模式下没有相应的事件源,Run Loop的运行也会立刻返回的。注意Run Loop不能在运行在NSRunLoopCommonModes模式,因为NSRunLoopCommonModes其实是个模式集合,而不是一个具体的模式,我可以在添加事件源的时候使用NSRunLoopCommonModes,只要Run Loop运行在NSRunLoopCommonModes中任何一个模式,这个事件源都可以被触发。
Run Loop的事件源
归根结底,Run Loop就是个处理事件的Loop,可以添加Timer和其他Input Source等各种事件源,如果事件源没有发生时,Run Loop就可能让线程进入asleep状态,而事件源发生时就会唤醒休眠的(asleep)的子线程来处理事件。Run Loop的事件源事件源分两类:Timer Source和Input Source(包括-performSelector:***API调用簇,Port Input Source、自定义Input Source)。
从上图可以看出Run Loop就是处理事件的一个循环,不同的是Timer Source事件处理后不会使Run Loop结束,而Input Source事件处理后会让Run Loop退出。因此你需要自己的一个Loop去不断运行Run Loop来处理事件,就像本文开头的示例那样。
细分下Run Loop的事件源:
1) Timer Souce就是创建Timer添加到Run Loop中,没啥好说的,Cocoa或者Core Foundation都有相应接口实现。需要注意的是scheduledTimerWith****
开头生成的Timer会自动帮你以默认NSDefaultRunLoopMode模式加载到当前的Run Loop中,而其他接口生成的Timer则需要你手动使用-addTimer:forMode
添加到Run Loop中。需要额外注意的是Timer的触发不会让Run Loop返回。(Timer sources deliver events to their handler routines but do not cause the run loop to exit.) 具体实验可以看下面的Sample Code。
2) Input Source中的-performSelector:***API调用簇方法,有以下这些接口:
1 2 3 4 5 6 7 8 9 10 11 |
|
这些API最后两个是取消当前线程中调用,其他API是在主线程或者当前线程下的Run Loop中执行指定的@selector。
3) Port Input Source:概念上也比较简单,可以用NSMachPort作为线程之间的通讯通道。例如在主线程创建子线程时传入一个NSPort对象,这样主线程就可以和这个子线程通讯啦,如果要实现双向通讯,那么子线程也需要回传给主线程一个NSPort。
NSPort的子类除了NSMachPort,还可以使用NSMessagePort或者Core Foundation中的CFMessagePortRef。
注意:虽然有这么棒的方式实现线程间通讯方式,但是估计是由于危及iOS的Sandbox沙盒环境,所以这些API都是私有接口,如果你用到NSPortMessage,XCode会提示'NSPortMessage' for instance message is a forward declaration
。
4) 自定义Input Source:
向Run Loop添加自定义Input Source只能使用Core Foundation的接口:CFRunLoopSourceCreate
创建一个source,CFRunLoopAddSource
向Run Loop中添加source,CFRunLoopRemoveSource
从Run Loop中删除source,CFRunLoopSourceSignal
通知source,CFRunLoopWakeUp
唤醒Run Loop。
Apple官方文档提供了一个自定义Input Source使用模式。
主线程持有包含子线程的Run Loop和Source的context对象,还有一个用于保存需要运行操作的数据buffer。主线程需要子线程干活时,首先将需要的操作数据添加到数据buffer,然后通知source,唤醒子线程Run Loop(因为子线程可能正在sleep状态,CFRunLoopWakeUp
唤醒Run Loop可以通知线程醒来干活),由于子线程也持有这个source和数据buffer,因此在触发唤醒时可以使用这个数据buffer的数据来执行相关操作(需要注意数据buffer访问时的同步)。
具体实现参见本文最后的Sample Code。
Run Loop的Observer
Core Foundation层的接口可以定义一个Run Loop的观察者在Run Loop进入以下某个状态时得到通知:
- Run loop的进入
- Run loop处理一个Timer的时刻
- Run loop处理一个Input Source的时刻
- Run loop进入睡眠的时刻
- Run loop被唤醒的时刻,但在唤醒它的事件被处理之前
- Run loop的终止
Observer的创建以及添加到Run Loop中需要使用Core Foundation的接口:
1 2 3 4 5 6 7 |
|
首先创建Observer的context,然后调用Core Foundation方法CFRunLoopObserverCreate创建Observer,再加入到当前线程的Run Loop中,注意CFRunLoopObserverCreate方法的第二个参数是Observer观察类型,有如下几种:
1 2 3 4 5 6 7 8 9 10 |
|
对应Run Loop的各种事件,kCFRunLoopAllActivities比较特殊,可以观察所有事件。具体样例代码请参考Sample Code。
总结
Run Loop就是一个处理事件源的循环,你可以控制这个Run Loop运行多久,如果当前没有事件发生,Run Loop会让这个线程进入睡眠状态(避免再浪费CPU时间),如果有事件发生,Run Loop就处理这个事件。Run Loop处理事件和发送给Observer通知的流程如下:
- 1) 进入Run Loop运行,此时会通知观察者进入Run Loop;
- 2) 如果有Timer即将触发时,通知观察者;
- 3) 如果有非Port的Input Sourc即将e触发时,通知观察者;
- 4)触发非Port的Input Source事件源;
- 5)如果基于Port的Input Source事件源即将触发时,立即处理该事件,跳转到步骤9;
- 6)通知观察者当前线程将进入休眠状态;
- 7)将线程进入休眠状态直到有以下事件发生:基于Port的Input Source被触发、Timer被触发、Run Loop运行时间到了过期时间、Run Loop被唤醒。
- 8) 通知观察者线程将要被唤醒。
- 9) 处理被触发的事件:
- 如果是用户自定义的Timer,处理Timer事件后重新启动Run Loop进入步骤2;
- 如果线程被唤醒又没有到过期时间,则进入步骤2;
- 如果是其他Input Source事件源有事件发生,直接处理这个事件;
- 10)到达此步骤说明Run Loop运行时间到期,或者是非Timer的Input Source事件被处理后,Run Loop将要退出,退出前通知观察者线程已退出。
什么时候需要用到Run Loop?官方文档的建议是:
- 需要使用Port或者自定义Input Source与其他线程进行通讯。
- 需要在线程中使用Timer。
- 需要在线程上使用performSelector*****方法。
- 需要让线程执行周期性的工作。
我个人在开发中遇到的需要使用Run Loop的情况有:
- 使用自定义Input Source和其他线程通信
- 子线程中使用了定时器
- 使用任何performSelector*****到子线程中运行方法
- 使用子线程去执行周期性任务
- NSURLConnection在子线程中发起异步请求
Sample Code
RunLoop刚开始用确实坑很多,理解概念最好的方式还是动手写代码,写了个例子放在GitHub上(工程NSThreadExample),欢迎大家讨论。
Apple官方也有一个基于Run Loop的异步网络请求示例程序SimpleURLConnections。
相关推荐
Tripple Farm:Match 3 Combination Game Complete Project 合成小镇三消Unity合成消除游戏项目游戏插件模版C# 支持Unity2020.3.4或更高 您知道像三合镇这样的著名益智游戏,并且您想制作一个自己的游戏。就是这样。这个包正好适合您。 这是一个完整的项目,您可以在零分钟内将其上传到 appstore 或 googleplay 商店。 基本规则: 3个或以上相同的道具可以匹配升级为新的道具。动物如果被困住,也可以合并。 羽毛: -移动(android/ios)就绪。 - 包含所有源代码。 -超过 12 座建筑/军团需要升级。 -三种特殊物品可以提供帮助。 - 三个不同的主题(场景和动物) -unity iap 支持 -Unity UI -广告位已准备好 -包含详细文档
内容概要:本文档是一份针对Java初学者的基础测试题,分为不定项选择题、简答题和编程题三大部分。选择题涵盖标识符、数组初始化、面向对象概念、运算符优先级、循环结构、对象行为、变量命名规则、基本
内容概要:本文详细介绍了如何利用MATLAB进行机器人运动学、动力学以及轨迹规划的建模与仿真。首先,通过具体的代码实例展示了正运动学和逆运动学的实现方法,包括使用DH参数建立机械臂模型、计算末端位姿以及求解关节角度。接着,讨论了雅克比矩阵的应用及其在速度控制中的重要性,并解释了如何检测和处理奇异位形。然后,深入探讨了动力学建模的方法,如使用拉格朗日方程和符号工具箱自动生成动力学方程。此外,还介绍了多种轨迹规划技术,包括抛物线插值和五次多项式插值,确保路径平滑性和可控性。最后,提供了常见仿真问题的解决方案,强调了在实际工程项目中需要注意的关键点。 适合人群:对机器人控制感兴趣的初学者、希望深入了解机器人运动学和动力学的学生及研究人员、从事机器人开发的技术人员。 使用场景及目标:① 学习如何使用MATLAB进行机器人运动学、动力学建模;② 掌握不同类型的轨迹规划方法及其应用场景;③ 解决仿真过程中遇到的各种问题,提高仿真的稳定性和准确性。 其他说明:文中提供的代码片段可以直接用于实验和教学,帮助读者更好地理解和掌握相关概念和技术。同时,针对实际应用中的挑战提出了实用的建议,有助于提升项目的成功率。
包括:源程序工程文件、Proteus仿真工程文件、配套技术手册等 1、采用51/52单片机作为主控芯片; 2、发送机:18B20测温、开关模拟灯光,发送数据; 3、接收机:接受数据、12864液晶显示;
内容概要:本文探讨了在微电网优化中如何处理风光能源的不确定性,特别是通过引入机会约束和概率序列的方法。首先介绍了风光能源的随机性和波动性带来的挑战,然后详细解释了机会约束的概念,即在一定概率水平下放松约束条件,从而提高模型灵活性。接着讨论了概率序列的应用,它通过对历史数据分析生成多个可能的风光发电场景及其概率,以此为基础构建优化模型的目标函数和约束条件。文中提供了具体的Matlab代码示例,演示了如何利用CPLEX求解器解决此类优化问题,并强调了参数选择、模型构建、约束添加以及求解过程中应注意的技术细节。此外,还提到了一些实用技巧,如通过调整MIP gap提升求解效率,使用K-means聚类减少场景数量以降低计算复杂度等。 适合人群:从事电力系统研究、微电网设计与运营的专业人士,尤其是那些对风光不确定性建模感兴趣的研究者和技术人员。 使用场景及目标:适用于需要评估和优化含有大量间歇性可再生能源接入的微电网系统,旨在提高系统的经济性和稳定性,确保在面对风光出力波动时仍能维持正常运作。 其他说明:文中提到的方法不仅有助于学术研究,也可应用于实际工程项目中,帮助工程师们制定更为稳健的微电网调度计划。同时,文中提供的代码片段可供读者参考并应用于类似的问题情境中。
linux之用户管理教程.md
内容概要:本文详细介绍了如何利用组态王和西门子S7-200 PLC构建六层或八层电梯控制系统。首先进行合理的IO地址分配,明确输入输出信号的功能及其对应的物理地址。接着深入解析了PLC源代码的关键部分,涵盖初始化、呼叫处理、电梯运行逻辑和平层处理等方面。此外,提供了组态王源代码用于实现动画仿真,展示了电梯轿厢的画面创建及动画连接方法。最后附上了详细的电气原理图和布局图,帮助理解和实施整个系统架构。 适合人群:从事工业自动化控制领域的工程师和技术人员,尤其是对PLC编程和人机界面开发感兴趣的从业者。 使用场景及目标:适用于教学培训、工程项目实践以及研究开发等场合。旨在为相关人员提供一个完整的电梯控制系统设计方案,便于他们掌握PLC编程技巧、熟悉组态软件的应用,并能够独立完成类似项目的开发。 其他说明:文中不仅包含了理论知识讲解,还分享了许多实际操作经验,如解决编码器丢脉冲的问题、优化平层停车精度的方法等。同时强调了安全性和可靠性方面的考虑,例如设置了多重保护机制以确保系统稳定运行。
在工业生产和设备运行过程中,滚动轴承故障、变压器油气故障等领域的数据分类与故障诊断至关重要。准确的数据分类与故障诊断能够及时发现设备潜在问题,避免故障恶化导致的生产事故与经济损失。LSTM能够捕获时序信息,马尔可夫场(MTF)能够一维信号转换为二维特征图,并结合CNN学习空间特征,MTF-1D-2D-CNN-LSTM-Attention模型通过将一维时序信号和二维图像融合,融合不同模态优势,并引入多头自注意力机制提高泛化能力,为数据分类与故障诊断提供了新的思路。实验结果表明,该模型在分类准确率、鲁棒性和泛化能力方面具有显著优势。多模态融合算法凭借其创新点和实验验证的有效性,在滚动轴承故障、变压器油气故障等领域展现出广阔的应用前景,有望推动相关领域故障诊断技术的进一步发展。 关键词:多模态融合;故障诊断;马尔可夫场;卷积神经网络;长短期记忆神经网络 适用平台:Matlab2023版本及以上。实验硬件设备配置如下:选用高性能计算机,搭载i7处理器,以确保数据处理和模型训练的高效性;配备16GB的内存,满足大规模数据加载和模型运算过程中的内存需求;使用高性能显卡,提供强大的并行计算能力,加速深度学习模型的训练过程。实验参数的选择依据多方面因素确定。
内容概要:本文档提供了一个面试模拟的指导框架,旨在为用户提供一个真实的面试体验。文档中的面试官名为Elian,被设定为性格温和冷静且思路清晰的形象,其主要职责是根据用户提供的简历信息和应聘岗位要求,进行一对一的模拟面试。面试官将逐一提出问题,确保每次只提一个问题,并等待候选人的回答结束后再继续下一个问题。面试官需要深入了解应聘岗位的具体要求,包括但不限于业务理解、行业知识、具体技能、专业背景以及项目经历等方面,从而全面评估候选人是否符合岗位需求。此外,文档强调了面试官应在用户主动发起提问后才开始回答,若用户未提供简历,面试官应首先邀请用户提供简历或描述应聘岗位; 适用人群:即将参加面试的求职者,特别是希望提前熟悉面试流程、提升面试技巧的人士; 使用场景及目标:①帮助求职者熟悉面试流程,提高应对实际面试的信心;②通过模拟面试,让求职者能够更好地展示自己的优势,发现自身不足之处并加以改进; 其他说明:此文档为文本格式,用户可以根据文档内容与面试官Elian进行互动,以达到最佳的模拟效果。在整个模拟过程中,用户应尽量真实地回答每一个问题,以便获得最贴近实际情况的反馈。
招聘技巧HR必看如何进行网络招聘和电话邀约.ppt
内容概要:本文详细介绍了利用三菱PLC(特别是FX系列)和组态王软件构建3x3书架式堆垛式立体库的方法。首先阐述了IO分配的原则,明确了输入输出信号的功能,如仓位检测、堆垛机运动控制等。接着深入解析了梯形图编程的具体实现,包括基本的左右移动控制、复杂的自动寻址逻辑,以及确保安全性的限位保护措施。还展示了接线图和原理图的作用,强调了正确的电气连接方式。最后讲解了组态王的画面设计技巧,通过图形化界面实现对立体库的操作和监控。 适用人群:从事自动化仓储系统设计、安装、调试的技术人员,尤其是熟悉三菱PLC和组态王的工程师。 使用场景及目标:适用于需要提高仓库空间利用率的小型仓储环境,旨在帮助技术人员掌握从硬件选型、电路设计到软件编程的全流程技能,最终实现高效稳定的自动化仓储管理。 其他说明:文中提供了多个实用的编程技巧和注意事项,如避免常见错误、优化性能参数等,有助于减少实际应用中的故障率并提升系统的可靠性。
内容概要:本文详细探讨了利用COMSOL进行电弧放电现象的模拟,重点在于采用磁流体方程(MHD)来耦合电磁、热流体和电路等多个物理场。文中介绍了关键的数学模型如磁流体动力学方程、热传导方程以及电路方程,并讨论了求解过程中遇到的技术难题,包括参数敏感性、求解器选择、网格划分等问题。此外,作者分享了许多实践经验,比如如何处理不同物理场之间的相互作用,怎样避免数值不稳定性和提高计算效率。 适用人群:适用于从事电弧放电研究的专业人士,尤其是那些希望通过数值模拟深入了解电弧行为并应用于实际工程项目的人群。 使用场景及目标:①帮助研究人员更好地理解和预测电弧放电过程中的各种物理现象;②为工程师提供优化电气设备设计的方法论支持;③指导使用者正确配置COMSOL软件的相关参数以确保高效稳定的仿真结果。 其他说明:尽管存在较高的计算复杂度和技术挑战,成功的电弧放电仿真能够显著提升对这一重要物理过程的认识水平,并促进相关领域的技术创新和发展。
内容概要:本文详细介绍了如何利用粒子群优化算法(PSO)改进极限学习机(KELM),以提升其在多维输入单维输出数据处理任务中的性能。首先简述了KELM的工作原理及其快速训练的特点,接着深入探讨了PSO算法的机制,包括粒子的速度和位置更新规则。然后展示了如何将PSO应用于优化KELM的关键参数,如输入权值和隐含层偏置,并提供了具体的Python代码实现。通过对模拟数据和实际数据集的实验对比,证明了PSO优化后的KELM在预测精度上有显著提升,尤其是在处理复杂数据时表现出色。 适合人群:对机器学习尤其是深度学习有一定了解的研究人员和技术爱好者,以及从事数据分析工作的专业人士。 使用场景及目标:适用于需要高效处理多维输入单维输出数据的任务,如时间序列预测、回归分析等。主要目标是通过优化模型参数,提高预测准确性并减少人工调参的时间成本。 其他说明:文中不仅给出了详细的理论解释,还附上了完整的代码示例,便于读者理解和实践。此外,还讨论了一些实用技巧,如参数选择、数据预处理等,有助于解决实际应用中的常见问题。
内容概要:本文介绍了利用粒子群算法(PSO)解决微网优化调度问题的方法。主要内容涵盖微网系统的组成(风力、光伏、储能、燃气轮机、柴油机)、需求响应机制、储能SOC约束处理及粒子群算法的具体实现。文中详细描述了目标函数的设计,包括发电成本、启停成本、需求响应惩罚项和SOC连续性惩罚项的计算方法。同时,阐述了粒子群算法的核心迭代逻辑及其参数调整策略,如惯性权重的线性递减策略。此外,还讨论了代码调试过程中遇到的问题及解决方案,并展示了仿真结果,证明了模型的有效性和优越性。 适合人群:从事电力系统优化、智能算法应用的研究人员和技术人员,特别是对微网调度感兴趣的读者。 使用场景及目标:适用于研究和开发微网优化调度系统,旨在提高供电稳定性的同时降低成本。具体应用场景包括但不限于分布式能源管理、工业园区能源调度等。目标是通过合理的调度策略,使微网系统在满足需求响应的前提下,实现经济效益最大化。 其他说明:本文提供的Matlab程序具有良好的模块化设计,便于扩展和维护。建议读者在理解和掌握基本原理的基础上,结合实际情况进行改进和创新。
KUKA机器人相关资料
基于多智能体的高层建筑分阶段火灾疏散仿 真及策略研究.pdf
Iterative Time Series Imputation by Maintaining Dependency Consistency (ACM TKDD 2024)
内容概要:本文详细探讨了带同步整流桥的交错PFC(功率因数校正)电路的设计与仿真实现。交错PFC通过多路PFC电路交错工作,降低了输入电流纹波,提高了功率密度。同步整流桥采用MOSFET代替传统二极管,减少了整流损耗,提升了效率。文中提供了关键代码片段,包括PWM控制、同步整流桥控制逻辑、电流环控制等,并介绍了如何在MATLAB/Simulink中搭建仿真模型,验证设计方案的有效性。此外,还讨论了仿真过程中遇到的问题及其解决方案,如死区时间处理、电流采样精度、负载突变应对等。 适合人群:从事电力电子设计的研究人员和技术工程师,尤其是对PFC技术和同步整流感兴趣的从业者。 使用场景及目标:适用于研究和开发高效的电源管理系统,旨在提高电能利用率,减少谐波污染,优化电源性能。目标是通过仿真实验验证设计方案的可行性,最终应用于实际硬件开发。 其他说明:文章强调了仿真与实际调试的区别,提醒读者在实际应用中需要注意的细节,如电流采样精度、死区时间和负载突变等问题。同时,提供了具体的代码实现和仿真技巧,帮助读者更好地理解和掌握这一复杂的技术。
内容概要:本文详细探讨了MATLAB环境下冷热电气多能互补微能源网的鲁棒优化调度模型。首先介绍了多能耦合元件(如风电、光伏、P2G、燃气轮机等)的运行特性模型,展示了如何通过MATLAB代码模拟这些元件的实际运行情况。接着阐述了电、热、冷、气四者的稳态能流模型及其相互关系,特别是热电联产过程中能流的转换和流动。然后重点讨论了考虑经济成本和碳排放最优的优化调度模型,利用MATLAB优化工具箱求解多目标优化问题,确保各能源设备在合理范围内运行并保持能流平衡。最后分享了一些实际应用中的经验和技巧,如处理风光出力预测误差、非线性约束、多能流耦合等。 适合人群:从事能源系统研究、优化调度、MATLAB编程的专业人士和技术爱好者。 使用场景及目标:适用于希望深入了解综合能源系统优化调度的研究人员和工程师。目标是掌握如何在MATLAB中构建和求解复杂的多能互补优化调度模型,提高能源利用效率,降低碳排放。 其他说明:文中提供了大量MATLAB代码片段,帮助读者更好地理解和实践所介绍的内容。此外,还提及了一些有趣的发现和挑战,如多能流耦合的复杂性、鲁棒优化的应用等。
内容概要:本文详细介绍了如何在Simulink中构建永磁同步电机(PMSM)无位置传感器的磁场定向控制(FOC)系统。主要内容涵盖双闭环PI调节器的设计、SVPWM调制方法、坐标变换、滑模观测器用于无位置估算以及各环节常见问题及其解决方案。文中提供了具体的MATLAB代码示例,如Clarke变换、SVPWM扇区判断、PI调节器抗饱和处理等,并分享了许多实用的调试技巧,如电流环积分限幅、SVPWM扇区判断优化、滑模观测器增益选择等。 适合人群:具有一定电机控制基础的研究人员和技术工程师,尤其是从事电力电子、自动化控制领域的专业人士。 使用场景及目标:适用于希望深入理解并掌握PMSM无位置传感器FOC控制系统的开发者。主要目标是在Simulink环境中搭建完整的FOC控制系统,解决实际应用中的各种技术难点,提高系统的稳定性和精度。 其他说明:文章强调了仿真与实际硬件之间的差异,指出了一些常见的陷阱和应对措施。同时,作者分享了很多个人实践经验,使得复杂的技术概念更加通俗易懂。