OLTP vs. OLAP
We can divide IT systems into transactional (OLTP) and analytical (OLAP). In general we can assume that OLTP systems provide source data to data warehouses, whereas OLAP systems help to analyze it.
OLTP (On-line Transaction Processing) System deals with operational data. Operational data are those data involved in the operation of a particular system.
Example: In a banking System, you withdraw amount through an ATM. Then account Number,ATM PIN Number,Amount you are withdrawing, Balance amount in account etc are operational data elements.
OLAP (On-line Analytical Processing) System deals with Historical Data or Archival Data. Historical data are those data that are archived over a long period of time.
OLAP is also referred to as DSS (Decision Support System).
Example: If we collect last 10 years data about flight reservation, The data can give us many meaningful information such as the trends in reservation. This may give useful information like peak time of travel, what kinds of people are traveling in various classes (Economy/Business)etc.
The biggest difference between an OLTP and an OLAP system is the amount of data analyzed in a single transaction. Whereas an OLTP handles many concurrent users and queries touching only a single record or limited groups of records at a time, an OLAP system must have the capability to operate on millions of records to answer a single query.The following table summarizes the differences between OLPT and OLAP:
CHARACTERISTIC of OLTP
System scope/view Single business process (Operational: ERP, CRM)
Data sources One
Data model Static
Dominant query type Insert/update
Data volume per transaction Small
Data volume Small/medium
Referesh Immediate
Bulk load/insert/update No
History data Not available
Response times < 1 second
System availability High “24/7″
Typical user Front office
Number of users Large
Example:
What is the Salary of Mr.Shyam?
What is the address and email id of the person who is the head of science department?
CHARACTERISTIC of OLAP
System scope/view Multiple business subjects (Decision Support System)
Data sources Many
Data model Dynamic
Dominant query type Read
Data volume per transaction Big
Data volume Large
Referesh Periodic
Bulk load/insert/update Yes
History data Available
Response times Can be in minutes
System availability Relaxed “8/5″
Typical user Managers/ Executive
Number of users Small/medium
- OLTP (On-line Transaction Processing) is characterized by a large number of short on-line transactions (INSERT, UPDATE, DELETE). The main emphasis for OLTP systems is put on very fast query processing, maintaining data integrity in multi-access environments and an effectiveness measured by number of transactions per second. In OLTP database there is detailed and current data, and schema used to store transactional databases is the entity model (usually 3NF).
- OLAP (On-line Analytical Processing) is characterized by relatively low volume of transactions. Queries are often very complex and involve aggregations. For OLAP systems a response time is an effectiveness measure. OLAP applications are widely used by Data Mining techniques. In OLAP database there is aggregated, historical data, stored in multi-dimensional schemas (usually star schema).
The following table summarizes the major differences between OLTP and OLAP system design.
OLTP System
|
OLAP System
|
|
Source of data |
Operational data; OLTPs are the original source of the data. |
Consolidation data; OLAP data comes from the various OLTP Databases |
Purpose of data |
To control and run fundamental business tasks |
To help with planning, problem solving, and decision support |
What the data |
Reveals a snapshot of ongoing business processes |
Multi-dimensional views of various kinds of business activities |
Inserts and Updates |
Short and fast inserts and updates initiated by end users |
Periodic long-running batch jobs refresh the data |
Queries |
Relatively standardized and simple queries Returning relatively few records |
Often complex queries involving aggregations |
Processing Speed |
Typically very fast |
Depends on the amount of data involved; batch data refreshes and complex queries may take many hours; query speed can be improved by creating indexes |
Space Requirements |
Can be relatively small if historical data is archived |
Larger due to the existence of aggregation structures and history data; requires more indexes than OLTP |
Database Design |
Highly normalized with many tables |
Typically de-normalized with fewer tables; use of star and/or snowflake schemas |
Backup and Recovery |
Backup religiously; operational data is critical to run the business, data loss is likely to entail significant monetary loss and legal liability |
Instead of regular backups, some environments may consider simply reloading the OLTP data as a recovery method |
相关推荐
随着企业业务的扩展,对于数据处理的需求也愈加复杂,OLTP(在线事务处理)和OLAP(在线分析处理)这两种数据库架构变得尤为重要。OLTP系统侧重于日常的事务处理,如增加、删除、修改等,强调处理速度、数据一致性及...
基于Oracle的OLTP与OLAP数据库内存设计和优化.pdf
【OLTP与OLAP技术融合架构实践】 在线事务处理(OLTP)和在线分析处理(OLAP)是两种不同但互补的数据处理模式。OLTP主要关注于日常事务处理,如银行交易、电子商务订单等,强调高并发、低延迟和数据的一致性。而...
《OLTP与OLAP:两种数据处理方式的深度解析》 在信息技术领域,OLTP(联机事务处理)和OLAP(联机分析处理)是两种核心的数据处理方式,它们各自服务于不同类型的业务需求,拥有截然不同的特性和应用场景。本文旨在...
### OLTP与OLAP的区别精简总结 #### 当今数据处理分类 当今的数据处理领域大致可以分为两大类:联机事务处理(Online Transaction Processing,简称OLTP)与联机分析处理(Online Analytical Processing,简称OLAP...
本文主要介绍了腾讯广告在OLTP(在线事务处理)和OLAP(在线分析处理)方面的实践,涉及到的技术栈包括Spark Streaming、HBase、Phoenix、Hermes等,并讨论了如何优化数据处理流程以提升效率和数据一致性。...
基于Oracle的OLTP与OLAP数据库设计及实现 基于Oracle的OLTP与OLAP数据库设计及实现是关系型数据库管理系统中的重要组成部分。 在本文中,我们将介绍OLTP和OLAP数据库设计及实现的概念,并讨论基于Oracle的OLTP和...
### OLTP与OLAP的区别详解 #### 一、引言 在现代信息技术领域,随着数据量的爆炸性增长以及业务需求的多样化发展,如何高效、准确地管理和利用这些数据成为了企业和组织关注的重点。在此背景下,两种重要的数据...
OLTP(在线事务处理)与OLAP(在线分析处理)是数据库领域的两项核心技术,它们分别服务于不同的业务需求场景。OLTP是面向交易的处理过程,强调的是快速响应用户操作,其特点包括数据量少、面向应用、并行事务处理、...
在数据处理领域,OLTP(在线事务处理)和OLAP(在线分析处理)是两种截然不同的系统类型,它们分别应对不同业务需求的挑战。OLTP作为传统关系型数据库的核心应用,它的存在与数据管理的历史紧密相连。随着系统数据...
### OLTP与OLAP系统数据库建模思考与实践 #### 一、引言 随着信息技术的发展,企业对数据处理的需求日益增长。为了更好地满足不同场景下的数据处理需求,出现了两种主流的数据处理方式:联机事务处理(Online ...
在数据库领域,OLTP(在线事务处理)和OLAP(在线分析处理)是两种关键的技术类型,它们分别服务于不同的业务需求。OLTP主要用于处理日常的事务性操作,如银行交易、零售销售等实时数据录入和查询,而OLAP则专注于...
其中,Bats作为一个面向OLTP(在线事务处理)、OLAP(在线分析处理)、批处理和流处理场景的大一统SQL引擎,为数据处理提供了高效且灵活的解决方案。本文将深入探讨Bats的关键特性、应用场景及其技术优势。 首先,...
OLTP与OLAP数据处理大致可以分成两大类:联机事务处理OLTP(on-line transaction processing)联机分析处理OLAP(On-L
【OLTP与OLAP业务系统的Oracle优化思路】 Oracle数据库在OLTP(联机事务处理)和OLAP(联机分析处理)系统中的优化策略各有侧重,主要体现在对系统特性的理解和针对不同业务需求的调整。 1. **数据库业务类型分类*...
PG,即PostgreSQL,是一种开源的对象关系型数据库系统,以其稳定性、可靠性、高性能而著称,广泛应用于OLTP(在线事务处理)、OLAP(在线分析处理)和流计算等多个领域。 在OLTP领域,PostgreSQL提供了一套完善的...
在线事务处理(OLTP)和在线分析处理(OLAP)是数据库系统中的两种核心操作模式,它们各自针对不同的业务需求。 OLTP,全称为在线事务处理,是大多数企业日常运营的核心,尤其适用于银行、电子商务、证券等需要频繁...
内容概要:本文详细介绍了OLAP(在线分析处理)和OLTP(在线交易处理)这两种不同的数据库系统。首先解释了OLTP的特性和典型应用,如高并发性、实时性和数据完整性,适用于电商、银行和航空订票等场景。接着阐述了...
蝙蝠面向OLTP,OLAP,批处理,流处理场景的大一统SQL引擎开发环境JDK 1.8以上Maven的3.3+需要先执行mvn eclipse:eclipse,否则项目里用到的一些java源文件会发现,这些java源文件是通过模板生成的。模块依赖关系...
- **OLTP vs OLAP**: - OLTP(Online Transaction Processing,联机事务处理)主要用于处理日常的业务操作,如银行转账等,特点是事务处理速度快,可靠性高。 - OLAP(OnLine Analytical Processing,联机分析...