import java.io.IOException;
public class SetTime {
public static void main(String args[]){
String osName = System.getProperty("os.name");
String cmd = "";
try {
if (osName.matches("^(?i)Windows.*$")) {// Window 系统
// 格式 HH:mm:ss
cmd = " cmd /c time 22:35:00";
Runtime.getRuntime().exec(cmd);
// 格式:yyyy-MM-dd
cmd = " cmd /c date 2009-03-26";
Runtime.getRuntime().exec(cmd);
} else {// Linux 系统
// 格式:yyyyMMdd
cmd = " date -s 20090326";
Runtime.getRuntime().exec(cmd);
// 格式 HH:mm:ss
cmd = " date -s 22:35:00";
Runtime.getRuntime().exec(cmd);
}
} catch (IOException e) {
e.printStackTrace();
}
}
}
---------------获取互联网时间-------------------
public static void main(String[] args) throws Exception {
// TODO Auto-generated method stub
URL url=new URL("http://www.bjtime.cn");//取得资源对象
URLConnection uc=url.openConnection();//生成连接对象
uc.connect(); //发出连接
long ld=uc.getDate(); //取得网站日期时间
Date date=new Date(ld); //转换为标准时间对象
System.out.println(date);
}
------通过ntp 获取系统准确时间---------
本程序是java通过网络访问NTP时间服务器,而获得精准的时间。不是获得本地时间
import java.io.IOException;
import java.io.InterruptedIOException;
import java.net.ConnectException;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.InetAddress;
import java.net.NoRouteToHostException;
import java.net.UnknownHostException;
public class TestNtp{
public static void main(String[] args){
int retry = 2;
int port = 123;
int timeout = 3000;
// get the address and NTP address request
//
InetAddress ipv4Addr = null;
try {
ipv4Addr = InetAddress.getByName("203.117.180.36");//更多NTP时间服务器参考附注
} catch (UnknownHostException e1) {
e1.printStackTrace();
}
int serviceStatus = -1;
DatagramSocket socket = null;
long responseTime = -1;
try {
socket = new DatagramSocket();
socket.setSoTimeout(timeout); // will force the
// InterruptedIOException
for (int attempts = 0; attempts <= retry && serviceStatus != 1; attempts++) {
try {
// Send NTP request
//
byte[] data = new NtpMessage().toByteArray();
DatagramPacket outgoing = new DatagramPacket(data, data.length, ipv4Addr, port);
long sentTime = System.currentTimeMillis();
socket.send(outgoing);
// Get NTP Response
//
// byte[] buffer = new byte[512];
DatagramPacket incoming = new DatagramPacket(data, data.length);
socket.receive(incoming);
responseTime = System.currentTimeMillis() - sentTime;
double destinationTimestamp = (System.currentTimeMillis() / 1000.0) + 2208988800.0;
//这里要加2208988800,是因为获得到的时间是格林尼治时间,所以要变成东八区的时间,否则会与与北京时间有8小时的时差
// Validate NTP Response
// IOException thrown if packet does not decode as expected.
NtpMessage msg = new NtpMessage(incoming.getData());
double localClockOffset = ((msg.receiveTimestamp - msg.originateTimestamp) + (msg.transmitTimestamp - destinationTimestamp)) / 2;
System.out.println("poll: valid NTP request received the local clock offset is " + localClockOffset + ", responseTime= " + responseTime + "ms");
System.out.println("poll: NTP message : " + msg.toString());
serviceStatus = 1;
} catch (InterruptedIOException ex) {
// Ignore, no response received.
}
}
} catch (NoRouteToHostException e) {
System.out.println("No route to host exception for address: " + ipv4Addr);
} catch (ConnectException e) {
// Connection refused. Continue to retry.
e.fillInStackTrace();
System.out.println("Connection exception for address: " + ipv4Addr);
} catch (IOException ex) {
ex.fillInStackTrace();
System.out.println("IOException while polling address: " + ipv4Addr);
} finally {
if (socket != null)
socket.close();
}
// Store response time if available
//
if (serviceStatus == 1) {
System.out.println("responsetime=="+responseTime);
}
}
}
import java.text.DecimalFormat;
import java.text.SimpleDateFormat;
import java.util.Date;
public class NtpMessage {
/** *//**
* This is a two-bit code warning of an impending leap second to be
* inserted/deleted in the last minute of the current day. It''s values may
* be as follows:
*
* Value Meaning ----- ------- 0 no warning 1 last minute has 61 seconds 2
* last minute has 59 seconds) 3 alarm condition (clock not synchronized)
*/
public byte leapIndicator = 0;
/** *//**
* This value indicates the NTP/SNTP version number. The version number is 3
* for Version 3 (IPv4 only) and 4 for Version 4 (IPv4, IPv6 and OSI). If
* necessary to distinguish between IPv4, IPv6 and OSI, the encapsulating
* context must be inspected.
*/
public byte version = 3;
/** *//**
* This value indicates the mode, with values defined as follows:
*
* Mode Meaning ---- ------- 0 reserved 1 symmetric active 2 symmetric
* passive 3 client 4 server 5 broadcast 6 reserved for NTP control message
* 7 reserved for private use
*
* In unicast and anycast modes, the client sets this field to 3 (client) in
* the request and the server sets it to 4 (server) in the reply. In
* multicast mode, the server sets this field to 5 (broadcast).
*/
public byte mode = 0;
/** *//**
* This value indicates the stratum level of the local clock, with values
* defined as follows:
*
* Stratum Meaning ---------------------------------------------- 0
* unspecified or unavailable 1 primary reference (e.g., radio clock) 2-15
* secondary reference (via NTP or SNTP) 16-255 reserved
*/
public short stratum = 0;
/** *//**
* This value indicates the maximum interval between successive messages, in
* seconds to the nearest power of two. The values that can appear in this
* field presently range from 4 (16 s) to 14 (16284 s); however, most
* applications use only the sub-range 6 (64 s) to 10 (1024 s).
*/
public byte pollInterval = 0;
/** *//**
* This value indicates the precision of the local clock, in seconds to the
* nearest power of two. The values that normally appear in this field
* range from -6 for mains-frequency clocks to -20 for microsecond clocks
* found in some workstations.
*/
public byte precision = 0;
/** *//**
* This value indicates the total roundtrip delay to the primary reference
* source, in seconds. Note that this variable can take on both positive and
* negative values, depending on the relative time and frequency offsets.
* The values that normally appear in this field range from negative values
* of a few milliseconds to positive values of several hundred milliseconds.
*/
public double rootDelay = 0;
/** *//**
* This value indicates the nominal error relative to the primary reference
* source, in seconds. The values that normally appear in this field range
* from 0 to several hundred milliseconds.
*/
public double rootDispersion = 0;
/** *//**
* This is a 4-byte array identifying the particular reference source. In
* the case of NTP Version 3 or Version 4 stratum-0 (unspecified) or
* stratum-1 (primary) servers, this is a four-character ASCII string, left
* justified and zero padded to 32 bits. In NTP Version 3 secondary servers,
* this is the 32-bit IPv4 address of the reference source. In NTP Version 4
* secondary servers, this is the low order 32 bits of the latest transmit
* timestamp of the reference source. NTP primary (stratum 1) servers should
* set this field to a code identifying the external reference source
* according to the following list. If the external reference is one of
* those listed, the associated code should be used. Codes for sources not
* listed can be contrived as appropriate.
*
* Code External Reference Source ---- ------------------------- LOCL
* uncalibrated local clock used as a primary reference for a subnet without
* external means of synchronization PPS atomic clock or other
* pulse-per-second source individually calibrated to national standards
* ACTS NIST dialup modem service USNO USNO modem service PTB PTB (Germany)
* modem service TDF Allouis (France) Radio 164 kHz DCF Mainflingen
* (Germany) Radio 77.5 kHz MSF Rugby (UK) Radio 60 kHz WWV Ft. Collins (US)
* Radio 2.5, 5, 10, 15, 20 MHz WWVB Boulder (US) Radio 60 kHz WWVH Kaui
* Hawaii (US) Radio 2.5, 5, 10, 15 MHz CHU Ottawa (Canada) Radio 3330,
* 7335, 14670 kHz LORC LORAN-C radionavigation system OMEG OMEGA
* radionavigation system GPS Global Positioning Service GOES Geostationary
* Orbit Environment Satellite
*/
public byte[] referenceIdentifier = { 0, 0, 0, 0 };
/** *//**
* This is the time at which the local clock was last set or corrected, in
* seconds since 00:00 1-Jan-1900.
*/
public double referenceTimestamp = 0;
/** *//**
* This is the time at which the request departed the client for the server,
* in seconds since 00:00 1-Jan-1900.
*/
public double originateTimestamp = 0;
/** *//**
* This is the time at which the request arrived at the server, in seconds
* since 00:00 1-Jan-1900.
*/
public double receiveTimestamp = 0;
/** *//**
* This is the time at which the reply departed the server for the client,
* in seconds since 00:00 1-Jan-1900.
*/
public double transmitTimestamp = 0;
/** *//**
* Constructs a new NtpMessage from an array of bytes.
*/
public NtpMessage(byte[] array) {
// See the packet format diagram in RFC 2030 for details
leapIndicator = (byte) ((array[0] >> 6) & 0x3);
version = (byte) ((array[0] >> 3) & 0x7);
mode = (byte) (array[0] & 0x7);
stratum = unsignedByteToShort(array[1]);
pollInterval = array[2];
precision = array[3];
rootDelay = (array[4] * 256.0) + unsignedByteToShort(array[5]) + (unsignedByteToShort(array[6]) / 256.0) + (unsignedByteToShort(array[7]) / 65536.0);
rootDispersion = (unsignedByteToShort(array[8]) * 256.0) + unsignedByteToShort(array[9]) + (unsignedByteToShort(array[10]) / 256.0) + (unsignedByteToShort(array[11]) / 65536.0);
referenceIdentifier[0] = array[12];
referenceIdentifier[1] = array[13];
referenceIdentifier[2] = array[14];
referenceIdentifier[3] = array[15];
referenceTimestamp = decodeTimestamp(array, 16);
originateTimestamp = decodeTimestamp(array, 24);
receiveTimestamp = decodeTimestamp(array, 32);
transmitTimestamp = decodeTimestamp(array, 40);
}
/** *//**
* Constructs a new NtpMessage
*/
public NtpMessage(byte leapIndicator, byte version, byte mode, short stratum, byte pollInterval, byte precision, double rootDelay, double rootDispersion, byte[] referenceIdentifier, double referenceTimestamp, double originateTimestamp, double receiveTimestamp, double transmitTimestamp) {
// ToDo: Validity checking
this.leapIndicator = leapIndicator;
this.version = version;
this.mode = mode;
this.stratum = stratum;
this.pollInterval = pollInterval;
this.precision = precision;
this.rootDelay = rootDelay;
this.rootDispersion = rootDispersion;
this.referenceIdentifier = referenceIdentifier;
this.referenceTimestamp = referenceTimestamp;
this.originateTimestamp = originateTimestamp;
this.receiveTimestamp = receiveTimestamp;
this.transmitTimestamp = transmitTimestamp;
}
/** *//**
* Constructs a new NtpMessage in client -> server mode, and sets the
* transmit timestamp to the current time.
*/
public NtpMessage() {
// Note that all the other member variables are already set with
// appropriate default values.
this.mode = 3;
this.transmitTimestamp = (System.currentTimeMillis() / 1000.0) + 2208988800.0;
}
/** *//**
* This method constructs the data bytes of a raw NTP packet.
*/
public byte[] toByteArray() {
// All bytes are automatically set to 0
byte[] p = new byte[48];
p[0] = (byte) (leapIndicator << 6 | version << 3 | mode);
p[1] = (byte) stratum;
p[2] = (byte) pollInterval;
p[3] = (byte) precision;
// root delay is a signed 16.16-bit FP, in Java an int is 32-bits
int l = (int) (rootDelay * 65536.0);
p[4] = (byte) ((l >> 24) & 0xFF);
p[5] = (byte) ((l >> 16) & 0xFF);
p[6] = (byte) ((l >> 8) & 0xFF);
p[7] = (byte) (l & 0xFF);
// root dispersion is an unsigned 16.16-bit FP, in Java there are no
// unsigned primitive types, so we use a long which is 64-bits
long ul = (long) (rootDispersion * 65536.0);
p[8] = (byte) ((ul >> 24) & 0xFF);
p[9] = (byte) ((ul >> 16) & 0xFF);
p[10] = (byte) ((ul >> 8) & 0xFF);
p[11] = (byte) (ul & 0xFF);
p[12] = referenceIdentifier[0];
p[13] = referenceIdentifier[1];
p[14] = referenceIdentifier[2];
p[15] = referenceIdentifier[3];
encodeTimestamp(p, 16, referenceTimestamp);
encodeTimestamp(p, 24, originateTimestamp);
encodeTimestamp(p, 32, receiveTimestamp);
encodeTimestamp(p, 40, transmitTimestamp);
return p;
}
/** *//**
* Returns a string representation of a NtpMessage
*/
public String toString() {
String precisionStr = new DecimalFormat("0.#E0").format(Math.pow(2, precision));
return "Leap indicator: " + leapIndicator + " " + "Version: " + version + " " + "Mode: " + mode + " " + "Stratum: " + stratum + " " + "Poll: " + pollInterval + " " + "Precision: " + precision + " (" + precisionStr + " seconds) " + "Root delay: " + new DecimalFormat("0.00").format(rootDelay * 1000) + " ms " + "Root dispersion: " + new DecimalFormat("0.00").format(rootDispersion * 1000) + " ms " + "Reference identifier: " + referenceIdentifierToString(referenceIdentifier, stratum, version) + " " + "Reference timestamp: " + timestampToString(referenceTimestamp) + " " + "Originate timestamp: " + timestampToString(originateTimestamp) + " " + "Receive timestamp: " + timestampToString(receiveTimestamp) + " " + "Transmit timestamp: " + timestampToString(transmitTimestamp);
}
/** *//**
* Converts an unsigned byte to a short. By default, Java assumes that a
* byte is signed.
*/
public static short unsignedByteToShort(byte b) {
if ((b & 0x80) == 0x80)
return (short) (128 + (b & 0x7f));
else
return (short) b;
}
/** *//**
* Will read 8 bytes of a message beginning at <code>pointer</code> and
* return it as a double, according to the NTP 64-bit timestamp format.
*/
public static double decodeTimestamp(byte[] array, int pointer) {
double r = 0.0;
for (int i = 0; i < 8; i++) {
r += unsignedByteToShort(array[pointer + i]) * Math.pow(2, (3 - i) * 8);
}
return r;
}
/** *//**
* Encodes a timestamp in the specified position in the message
*/
public static void encodeTimestamp(byte[] array, int pointer, double timestamp) {
// Converts a double into a 64-bit fixed point
for (int i = 0; i < 8; i++) {
// 2^24, 2^16, 2^8, .. 2^-32
double base = Math.pow(2, (3 - i) * 8);
// Capture byte value
array[pointer + i] = (byte) (timestamp / base);
// Subtract captured value from remaining total
timestamp = timestamp - (double) (unsignedByteToShort(array[pointer + i]) * base);
}
// From RFC 2030: It is advisable to fill the non-significant
// low order bits of the timestamp with a random, unbiased
// bitstring, both to avoid systematic roundoff errors and as
// a means of loop detection and replay detection.
array[7] = (byte) (Math.random() * 255.0);
}
/** *//**
* Returns a timestamp (number of seconds since 00:00 1-Jan-1900) as a
* formatted date/time string.
*/
public static String timestampToString(double timestamp) {
if (timestamp == 0)
return "0";
// timestamp is relative to 1900, utc is used by Java and is relative
// to 1970
double utc = timestamp - (2208988800.0);
// milliseconds
long ms = (long) (utc * 1000.0);
// date/time
String date = new SimpleDateFormat("dd-MMM-yyyy HH:mm:ss").format(new Date(ms));
// fraction
double fraction = timestamp - ((long) timestamp);
String fractionSting = new DecimalFormat(".000000").format(fraction);
return date + fractionSting;
}
/** *//**
* Returns a string representation of a reference identifier according to
* the rules set out in RFC 2030.
*/
public static String referenceIdentifierToString(byte[] ref, short stratum, byte version) {
// From the RFC 2030:
// In the case of NTP Version 3 or Version 4 stratum-0 (unspecified)
// or stratum-1 (primary) servers, this is a four-character ASCII
// string, left justified and zero padded to 32 bits.
if (stratum == 0 || stratum == 1) {
return new String(ref);
}
// In NTP Version 3 secondary servers, this is the 32-bit IPv4
// address of the reference source.
else if (version == 3) {
return unsignedByteToShort(ref[0]) + "." + unsignedByteToShort(ref[1]) + "." + unsignedByteToShort(ref[2]) + "." + unsignedByteToShort(ref[3]);
}
// In NTP Version 4 secondary servers, this is the low order 32 bits
// of the latest transmit timestamp of the reference source.
else if (version == 4) {
return "" + ((unsignedByteToShort(ref[0]) / 256.0) + (unsignedByteToShort(ref[1]) / 65536.0) + (unsignedByteToShort(ref[2]) / 16777216.0) + (unsignedByteToShort(ref[3]) / 4294967296.0));
}
return "";
}
}
参见:http://lshh83.iteye.com/blog/546405
相关推荐
### Java获取系统时间详解 在Java编程语言中,获取系统时间是一项非常基本且重要的功能,尤其是在需要记录事件发生的时间、实现定时任务或是进行日期时间相关的计算时。本文将基于提供的代码示例,深入探讨如何在...
目前Java没有直接设置系统时间精确到毫秒的方法,这里结合C可以时间。使用Java代码调用C库。
在Android系统中,修改系统时间通常涉及到安全性和应用程序的正确运行。系统时间是操作系统的核心组件之一,用于跟踪日期和时间,对于同步、日志记录和其他关键功能至关重要。下面将详细介绍两种在Android中修改系统...
这个程序的使用场景主要是针对服务器,特别是云服务器,可能因为安全策略或者权限限制,普通用户无法直接修改系统时间。通过这个Java程序,可以在不违反这些策略的情况下,实现自动、高效的时间同步,保证系统的正常...
利用Java代码设置Linux系统时间。设置时间精确到毫秒级别。
本项目“用java+swing实现的文件时间修改工具”是利用这两种技术来创建一个实用程序,允许用户更改文件或文件夹的创建、访问和修改时间戳。 Java提供了`java.io.File`类,它是文件和目录路径名的抽象表示。通过这个...
在Java编程中,时间监听是一项重要的任务,它允许程序对系统时间的变化进行反应或执行特定操作。这通常通过注册监听器来实现,监听器是一种回调机制,当特定事件发生时,它会被调用。在Java中,我们可以使用`java....
在Android系统中,修改系统时间是一项常见的操作,无论是为了测试应用程序的时间依赖性,还是用户根据个人需求调整时间,都需要对系统时间进行设置。本篇将深入探讨如何在Android平台上实现这一功能。 首先,我们...
在Java编程中,获取系统时间的操作通常是通过`java.util.Date`类或`java.time`包下的类来实现的。然而,有时我们可能会遇到一个常见问题,即从Java程序中获取到的时间与实际时间相差8小时,这主要是由于时区设置不...
在Android系统中,修改系统时间通常涉及到系统的敏感权限,因为这可能会影响到系统及应用的正常运行。本篇文章将深入探讨如何在Android应用程序中获取修改系统时间的权限,并提供相关源码分析。 首先,我们需要理解...
标题"fileTimeInfo_java_统计文件创建时间和修改时间_"指的是一个Java程序,它用于获取指定目录下所有文件的创建时间(Creation Time)和最后修改时间(Last Modified Time)。下面将详细阐述如何在Java中实现这一...
在 Android 平台上,修改系统时间和日期的功能通常受到严格的限制,以防止恶意应用程序篡改系统时间。然而,在某些特定的应用场景下(例如时区调整工具或特殊调试应用),开发者可能需要实现这一功能。本文将基于...
此外,由于安全性和隐私考虑,Google在Android 10及以上版本中对`WRITE_SETTINGS`权限进行了更严格的限制,普通应用可能无法直接修改系统时间,除非用户手动开启“允许自定义系统时间”选项。 以上就是Android通过...
在这个程序中,开发者可能使用了`JFrame`、`JButton`、`JLabel`、`JTextField`等组件,让用户输入时间,然后通过事件监听机制来响应用户的操作,执行修改系统时间的命令。 综上所述,这个Java程序利用了NetBeans ...
这可能是由于Java的时区设置、系统时间与程序之间的交互,或者是Java运行环境(JRE)与操作系统之间的兼容性问题导致的。以下是一些相关的知识点: 1. **Java日期和时间API**: - Java 早期的日期时间处理主要依赖...
只有当设备已经获得Root权限后,我们才能通过编程方式直接修改系统时间。Root是Android系统的一种超级用户权限,允许用户访问并修改系统级别的文件和设置。 在描述中提到的“用代码修改Linux层的命令”,这暗示我们...
本文档的主要内容详细介绍的是java新日期结果与操作系统时间相差8小时...但是此前并没有发生这类问题,以前时间是正确的,但是重装系统后出现了java的时间问题,可能是系统时间注册表出现问题,这里就不修改注册表了。
在Java中,可以使用`java.time`包的类来处理时间,但修改系统时间通常需要用到`Runtime.getRuntime().exec()`执行操作系统命令。 如果这个压缩包包含源码,可能包括了这些操作的实现,可能有多种语言版本,例如C、...
`adjustSystemTime()`方法则会利用这个时间差,通过调用操作系统API(可能需要使用JNI或JNA)来修改本地系统时间。 请注意,实际的`SyncTime.java`文件可能会包含更详细的错误处理、日志记录以及对NTP协议更精确的...
在Java中,获取文件的创建时间并不像获取文件的最后修改时间那样简单直接。这是因为Java标准库(JDK)在早期版本中并没有提供直接获取文件创建时间的方法。不过,从Java 7开始,通过NIO(New I/O)API可以实现这一...