`

JVM系列

    博客分类:
  • Java
 
阅读更多

java内存组成介绍:堆(Heap)和非堆(Non-heap)内存

       按照官方的说法:“Java 虚拟机具有一个堆,堆是运行时数据区域,所有类实例和数组的内存均从此处分配。堆是在 Java 虚拟机启动时创建的。”“在JVM中堆之外的内存称为非堆内存(Non-heap memory)”。可以看出JVM主要管理两种类型的内存:堆和非堆。简单来说堆就是Java代码可及的内存,是留给开发人员使用的;非堆就是JVM留给 自己用的,所以方法区、JVM内部处理或优化所需的内存(如JIT编译后的代码缓存)、每个类结构(如运行时常数池、字段和方法数据)以及方法和构造方法 的代码都在非堆内存中。

组成图

  • 方法栈&本地方法栈:
    线程创建时产生,方法执行时生成栈帧
  • 方法区
    存储类的元数据信息 常量等

  • java代码中所有的new操作
  • native Memory(C heap)
    Direct Bytebuffer JNI Compile GC;

 

堆内存分配

       JVM初始分配的内存由-Xms指定,默认是物理内存的1/64;JVM最大分配的内存由-Xmx指 定,默认是物理内存的1/4。默认空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制;空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制。因此服务器一般设置-Xms、-Xmx相等以避免在每次GC 后调整堆的大小。对象的堆内存由称为垃圾回收器的自动内存管理系统回收。

 

组成 详解
Young Generation 即图中的Eden + From Space + To Space

Eden

存放新生的对象

Survivor Space

有两个,存放每次垃圾回收后存活的对象
Old Generation Tenured Generation 即图中的Old Space 
主要存放应用程序中生命周期长的存活对象

      非堆内存分配
      JVM使用-XX:PermSize设置非堆内存初始值,默认是物理内存的1/64;由XX:MaxPermSize设置最大非堆内存的大小,默认是物理内存的1/4。

组成 详解
Permanent Generation 保存虚拟机自己的静态(refective)数据
主要存放加载的Class类级别静态对象如class本身,method,field等等
permanent generation空间不足会引发full GC(详见HotSpot VM GC种类)
Code Cache 用于编译和保存本地代码(native code)的内存
JVM内部处理或优化

 

 

JVM里的GC(Garbage Collection)的算法有很多种,如标记清除收集器,压缩收集器,分代收集器等等,详见HotSpot VM GC 的种类

       现在比较常用的是分代收集(generational collection,也是SUN VM使用的,J2SE1.2之后引入),即将内存分为几个区域,将不同生命周期的对象放在不同区域里:young generationtenured generation和permanet generation。绝大部分的objec被分配在young generation(生命周期短),并且大部分的object在这里die。当young generation满了之后,将引发minor collection(YGC)。在minor collection后存活的object会被移动到tenured generation(生命周期比较长)。最后,tenured generation满之后触发major collection。major collection(Full gc)会触发整个heap的回收,包括回收young generation。permanet generation区域比较稳定,主要存放classloader信息。

       young generation有eden、2个survivor 区域组成。其中一个survivor区域一直是空的,是eden区域和另一个survivor区域在下一次copy collection后活着的objecy的目的地。object在survivo区域被复制直到转移到tenured区。

       我们要尽量减少 Full gc 的次数(tenured generation 一般比较大,收集的时间较长,频繁的Full gc会导致应用的性能收到严重的影响)。

堆内存GC
       JVM(采用分代回收的策略),用较高的频率对年轻的对象(young generation)进行YGC,而对老对象(tenured generation)较少(tenured generation 满了后才进行)进行Full GC。这样就不需要每次GC都将内存中所有对象都检查一遍。

非堆内存不GC

      GC不会在主程序运行期对PermGen Space进行清理,所以如果你的应用中有很多CLASS(特别是动态生成类,当然permgen space存放的内容不仅限于类)的话,就很可能出现PermGen Space错误。

内存申请、对象衰老过程
一、内存申请过程

  1. JVM会试图为相关Java对象在Eden中初始化一块内存区域;
  2. 当Eden空间足够时,内存申请结束。否则到下一步;
  3. JVM试图释放在Eden中所有不活跃的对象(minor collection),释放后若Eden空间仍然不足以放入新对象,则试图将部分Eden中活跃对象放入Survivor区;
  4. Survivor区被用来作为Eden及old的中间交换区域,当OLD区空间足够时,Survivor区的对象会被移到Old区,否则会被保留在Survivor区;
  5. 当old区空间不够时,JVM会在old区进行major collection;
  6. 完全垃圾收集后,若Survivor及old区仍然无法存放从Eden复制过来的部分对象,导致JVM无法在Eden区为新对象创建内存区域,则出现"Out of memory错误";

二、对象衰老过程

  1. 新创建的对象的内存都分配自eden。Minor collection的过程就是将eden和在用survivor space中的活对象copy到空闲survivor space中。对象在young generation里经历了一定次数(可以通过参数配置)的minor collection后,就会被移到old generation中,称为tenuring。
  2. GC触发条件
    GC类型 触发条件 触发时发生了什么 注意 查看方式
    YGC eden空间不足

    清空Eden+from survivor中所有no ref的对象占用的内存
    将eden+from sur中所有存活的对象copy到to sur中
    一些对象将晋升到old中:
        to sur放不下的
        存活次数超过turning threshold中的
    重新计算tenuring threshold(serial parallel GC会触发此项)

    重新调整Eden 和from的大小(parallel GC会触发此项)

    全过程暂停应用
    是否为多线程处理由具体的GC决定
    jstat –gcutil 
    gc log
    FGC

    old空间不足
    perm空间不足
    显示调用System.GC, RMI等的定时触发
    YGC时的悲观策略
    dump live的内存信息时(jmap –dump:live)

    清空heap中no ref的对象
    permgen中已经被卸载的classloader中加载的class信息

    如配置了CollectGenOFirst,则先触发YGC(针对serial GC)
    如配置了ScavengeBeforeFullGC,则先触发YGC(针对serial GC)

    全过程暂停应用
    是否为多线程处理由具体的GC决定

    是否压缩需要看配置的具体GC
    jstat –gcutil 
    gc log
    permanent generation空间不足会引发Full GC,仍然不够会引发PermGen Space错误。

 

 

不管是YGC还是Full GC,GC过程中都会对导致程序运行中中断,正确的选择不同的GC策略,调整JVM、GC的参数,可以极大的减少由于GC工作,而导致的程序运行中断方面的问题,进而适当的提高Java程序的工作效率。但是调整GC是以个极为复杂的过程,由于各个程序具备不同的特点,如:web和GUI程序就有很大区别(Web可以适当的停顿,但GUI停顿是客户无法接受的),而且由于跑在各个机器上的配置不同(主要cup个数,内存不同),所以使用的GC种类也会不同(如何选择见GC种类及如何选择)。本文将注重介绍JVM、GC的一些重要参数的设置来提高系统的性能。

       JVM内存组成及GC相关内容请见之前的文章:JVM内存组成 GC策略&内存申请

JVM参数的含义 实例见实例分析

参数名称 含义 默认值  
-Xms 初始堆大小 物理内存的1/64(<1GB) 默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制.
-Xmx 最大堆大小 物理内存的1/4(<1GB) 默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn 年轻代大小(1.4or lator)   注意:此处的大小是(eden+ 2 survivor space).与jmap -heap中显示的New gen是不同的。
整个堆大小=年轻代大小 + 年老代大小 + 持久代大小.
增大年轻代后,将会减小年老代大小.此值对系统性能影响较大,Sun官方推荐配置为整个堆的3/8
-XX:NewSize 设置年轻代大小(for 1.3/1.4)    
-XX:MaxNewSize 年轻代最大值(for 1.3/1.4)    
-XX:PermSize 设置持久代(perm gen)初始值 物理内存的1/64  
-XX:MaxPermSize 设置持久代最大值 物理内存的1/4  
-Xss 每个线程的堆栈大小   JDK5.0以后每个线程堆栈大小为1M,以前每个线程堆栈大小为256K.更具应用的线程所需内存大小进行 调整.在相同物理内存下,减小这个值能生成更多的线程.但是操作系统对一个进程内的线程数还是有限制的,不能无限生成,经验值在3000~5000左右
一般小的应用, 如果栈不是很深, 应该是128k够用的 大的应用建议使用256k。这个选项对性能影响比较大,需要严格的测试。(校长)
和threadstacksize选项解释很类似,官方文档似乎没有解释,在论坛中有这样一句话:"”
-Xss is translated in a VM flag named ThreadStackSize”
一般设置这个值就可以了。
-XX:ThreadStackSize Thread Stack Size   (0 means use default stack size) [Sparc: 512; Solaris x86: 320 (was 256 prior in 5.0 and earlier); Sparc 64 bit: 1024; Linux amd64: 1024 (was 0 in 5.0 and earlier); all others 0.]
-XX:NewRatio 年轻代(包括Eden和两个Survivor区)与年老代的比值(除去持久代)   -XX:NewRatio=4表示年轻代与年老代所占比值为1:4,年轻代占整个堆栈的1/5
Xms=Xmx并且设置了Xmn的情况下,该参数不需要进行设置。
-XX:SurvivorRatio Eden区与Survivor区的大小比值   设置为8,则两个Survivor区与一个Eden区的比值为2:8,一个Survivor区占整个年轻代的1/10
-XX:LargePageSizeInBytes 内存页的大小不可设置过大, 会影响Perm的大小   =128m
-XX:+UseFastAccessorMethods 原始类型的快速优化    
-XX:+DisableExplicitGC 关闭System.gc()   这个参数需要严格的测试
-XX:MaxTenuringThreshold 垃圾最大年龄   如果设置为0的话,则年轻代对象不经过Survivor区,直接进入年老代. 对于年老代比较多的应用,可以提高效率.如果将此值设置为一个较大值,则年轻代对象会在Survivor区进行多次复制,这样可以增加对象再年轻代的存活 时间,增加在年轻代即被回收的概率
该参数只有在串行GC时才有效.
-XX:+AggressiveOpts 加快编译    
-XX:+UseBiasedLocking 锁机制的性能改善    
-Xnoclassgc 禁用垃圾回收    
-XX:SoftRefLRUPolicyMSPerMB 每兆堆空闲空间中SoftReference的存活时间 1s softly reachable objects will remain alive for some amount of time after the last time they were referenced. The default value is one second of lifetime per free megabyte in the heap
-XX:PretenureSizeThreshold 对象超过多大是直接在旧生代分配 0 单位字节 新生代采用Parallel Scavenge GC时无效
另一种直接在旧生代分配的情况是大的数组对象,且数组中无外部引用对象.
-XX:TLABWasteTargetPercent TLAB占eden区的百分比 1%  
-XX:+CollectGen0First FullGC时是否先YGC false  

并行收集器相关参数

-XX:+UseParallelGC Full GC采用parallel MSC
(此项待验证)
 

选择垃圾收集器为并行收集器.此配置仅对年轻代有效.即上述配置下,年轻代使用并发收集,而年老代仍旧使用串行收集.(此项待验证)

-XX:+UseParNewGC 设置年轻代为并行收集   可与CMS收集同时使用
JDK5.0以上,JVM会根据系统配置自行设置,所以无需再设置此值
-XX:ParallelGCThreads 并行收集器的线程数   此值最好配置与处理器数目相等 同样适用于CMS
-XX:+UseParallelOldGC 年老代垃圾收集方式为并行收集(Parallel Compacting)   这个是JAVA 6出现的参数选项
-XX:MaxGCPauseMillis 每次年轻代垃圾回收的最长时间(最大暂停时间)   如果无法满足此时间,JVM会自动调整年轻代大小,以满足此值.
-XX:+UseAdaptiveSizePolicy 自动选择年轻代区大小和相应的Survivor区比例   设置此选项后,并行收集器会自动选择年轻代区大小和相应的Survivor区比例,以达到目标系统规定的最低相应时间或者收集频率等,此值建议使用并行收集器时,一直打开.
-XX:GCTimeRatio 设置垃圾回收时间占程序运行时间的百分比   公式为1/(1+n)
-XX:+ScavengeBeforeFullGC Full GC前调用YGC true Do young generation GC prior to a full GC. (Introduced in 1.4.1.)

CMS相关参数

-XX:+UseConcMarkSweepGC 使用CMS内存收集   测试中配置这个以后,-XX:NewRatio=4的配置失效了,原因不明.所以,此时年轻代大小最好用-Xmn设置.???
-XX:+AggressiveHeap     试图是使用大量的物理内存
长时间大内存使用的优化,能检查计算资源(内存, 处理器数量)
至少需要256MB内存
大量的CPU/内存, (在1.4.1在4CPU的机器上已经显示有提升)
-XX:CMSFullGCsBeforeCompaction 多少次后进行内存压缩   由于并发收集器不对内存空间进行压缩,整理,所以运行一段时间以后会产生"碎片",使得运行效率降低.此值设置运行多少次GC以后对内存空间进行压缩,整理.
-XX:+CMSParallelRemarkEnabled 降低标记停顿    
-XX+UseCMSCompactAtFullCollection 在FULL GC的时候, 对年老代的压缩   CMS是不会移动内存的, 因此, 这个非常容易产生碎片, 导致内存不够用, 因此, 内存的压缩这个时候就会被启用。 增加这个参数是个好习惯。
可能会影响性能,但是可以消除碎片
-XX:+UseCMSInitiatingOccupancyOnly 使用手动定义初始化定义开始CMS收集   禁止hostspot自行触发CMS GC
-XX:CMSInitiatingOccupancyFraction=70 使用cms作为垃圾回收
使用70%后开始CMS收集
92 为了保证不出现promotion failed(见下面介绍)错误,该值的设置需要满足以下公式CMSInitiatingOccupancyFraction计算公式
-XX:CMSInitiatingPermOccupancyFraction 设置Perm Gen使用到达多少比率时触发 92  
-XX:+CMSIncrementalMode 设置为增量模式   用于单CPU情况
-XX:+CMSClassUnloadingEnabled      

辅助信息

-XX:+PrintGC    

输出形式:

[GC 118250K->113543K(130112K), 0.0094143 secs]
[Full GC 121376K->10414K(130112K), 0.0650971 secs]

-XX:+PrintGCDetails    

输出形式:[GC [DefNew: 8614K->781K(9088K), 0.0123035 secs] 118250K->113543K(130112K), 0.0124633 secs]
[GC [DefNew: 8614K->8614K(9088K), 0.0000665 secs][Tenured: 112761K->10414K(121024K), 0.0433488 secs] 121376K->10414K(130112K), 0.0436268 secs]

-XX:+PrintGCTimeStamps      
-XX:+PrintGC:PrintGCTimeStamps     可与-XX:+PrintGC -XX:+PrintGCDetails混合使用
输出形式:11.851: [GC 98328K->93620K(130112K), 0.0082960 secs]
-XX:+PrintGCApplicationStoppedTime 打印垃圾回收期间程序暂停的时间.可与上面混合使用   输出形式:Total time for which application threads were stopped: 0.0468229 seconds
-XX:+PrintGCApplicationConcurrentTime 打印每次垃圾回收前,程序未中断的执行时间.可与上面混合使用   输出形式:Application time: 0.5291524 seconds
-XX:+PrintHeapAtGC 打印GC前后的详细堆栈信息    
-Xloggc:filename 把相关日志信息记录到文件以便分析.
与上面几个配合使用
   

-XX:+PrintClassHistogram

garbage collects before printing the histogram.    
-XX:+PrintTLAB 查看TLAB空间的使用情况    
XX:+PrintTenuringDistribution 查看每次minor GC后新的存活周期的阈值  

Desired survivor size 1048576 bytes, new threshold 7 (max 15)
new threshold 7即标识新的存活周期的阈值为7。

GC性能方面的考虑

       对于GC的性能主要有2个方面的指标:吞吐量throughput(工作时间不算gc的时间占总的时间比)和暂停pause(gc发生时app对外显示的无法响应)。

1. Total Heap

       默认情况下,vm会增加/减少heap大小以维持free space在整个vm中占的比例,这个比例由MinHeapFreeRatio和MaxHeapFreeRatio指定。

一般而言,server端的app会有以下规则:

  • 对vm分配尽可能多的memory;
  • 将Xms和Xmx设为一样的值。如果虚拟机启动时设置使用的内存比较小,这个时候又需要初始化很多对象,虚拟机就必须重复地增加内存。
  • 处理器核数增加,内存也跟着增大。

2. The Young Generation

       另外一个对于app流畅性运行影响的因素是young generation的大小。young generation越大,minor collection越少;但是在固定heap size情况下,更大的young generation就意味着小的tenured generation,就意味着更多的major collection(major collection会引发minor collection)。

       NewRatio反映的是young和tenured generation的大小比例。NewSize和MaxNewSize反映的是young generation大小的下限和上限,将这两个值设为一样就固定了young generation的大小(同Xms和Xmx设为一样)。

       如果希望,SurvivorRatio也可以优化survivor的大小,不过这对于性能的影响不是很大。SurvivorRatio是eden和survior大小比例。

一般而言,server端的app会有以下规则:

  • 首先决定能分配给vm的最大的heap size,然后设定最佳的young generation的大小;
  • 如果heap size固定后,增加young generation的大小意味着减小tenured generation大小。让tenured generation在任何时候够大,能够容纳所有live的data(留10%-20%的空余)。

经验&&规则

  1. 年轻代大小选择
    • 响应时间优先的应用:尽可能设大,直到接近系统的最低响应时间限制(根据实际情况选择).在此种情况下,年轻代收集发生的频率也是最小的.同时,减少到达年老代的对象.
    • 吞吐量优先的应用:尽可能的设置大,可能到达Gbit的程度.因为对响应时间没有要求,垃圾收集可以并行进行,一般适合8CPU以上的应用.
    • 避免设置过小.当新生代设置过小时会导致:1.YGC次数更加频繁 2.可能导致YGC对象直接进入旧生代,如果此时旧生代满了,会触发FGC.
  2. 年老代大小选择
    1. 响应时间优先的应用:年老代使用并发收集器,所以其大小需要小心设置,一般要考虑并发会话率和会话持续时间等一些参数.如果堆设置小了,可以会造成内存碎 片,高回收频率以及应用暂停而使用传统的标记清除方式;如果堆大了,则需要较长的收集时间.最优化的方案,一般需要参考以下数据获得:
      并发垃圾收集信息、持久代并发收集次数、传统GC信息、花在年轻代和年老代回收上的时间比例。
    2. 吞吐量优先的应用:一般吞吐量优先的应用都有一个很大的年轻代和一个较小的年老代.原因是,这样可以尽可能回收掉大部分短期对象,减少中期的对象,而年老代尽存放长期存活对象.
  3. 较小堆引起的碎片问题
    因为年老代的并发收集器使用标记,清除算法,所以不会对堆进行压缩.当收集器回收时,他会把相邻的空间进行合并,这样可以分配给较大的对象.但是,当堆空间较小时,运行一段时间以后,就会出现"碎片",如果并发收集器找不到足够的空间,那么并发收集器将会停止,然后使用传统的标记,清除方式进行回收.如果出现"碎片",可能需要进行如下配置:
    -XX:+UseCMSCompactAtFullCollection:使用并发收集器时,开启对年老代的压缩.
    -XX:CMSFullGCsBeforeCompaction=0:上面配置开启的情况下,这里设置多少次Full GC后,对年老代进行压缩
  4. 用64位操作系统,Linux下64位的jdk比32位jdk要慢一些,但是吃得内存更多,吞吐量更大
  5. XMX和XMS设置一样大,MaxPermSize和MinPermSize设置一样大,这样可以减轻伸缩堆大小带来的压力
  6. 使用CMS的好处是用尽量少的新生代,经验值是128M-256M, 然后老生代利用CMS并行收集, 这样能保证系统低延迟的吞吐效率。 实际上cms的收集停顿时间非常的短,2G的内存, 大约20-80ms的应用程序停顿时间
  7. 系统停顿的时候可能是GC的问题也可能是程序的问题,多用jmap和jstack查看,或者killall -3 java,然后查看java控制台日志,能看出很多问题。(相关工具的使用方法将在后面的blog中介绍)
  8. 仔细了解自己的应用,如果用了缓存,那么年老代应该大一些,缓存的HashMap不应该无限制长,建议采用LRU算法的Map做缓存,LRUMap的最大长度也要根据实际情况设定。
  9. 采用并发回收时,年轻代小一点,年老代要大,因为年老大用的是并发回收,即使时间长点也不会影响其他程序继续运行,网站不会停顿
  10. JVM参数的设置(特别是 –Xmx –Xms –Xmn -XX:SurvivorRatio  -XX:MaxTenuringThreshold等参数的设置没有一个固定的公式,需要根据PV old区实际数据 YGC次数等多方面来衡量。为了避免promotion faild可能会导致xmn设置偏小,也意味着YGC的次数会增多,处理并发访问的能力下降等问题。每个参数的调整都需要经过详细的性能测试,才能找到特定应用的最佳配置。

promotion failed:

垃圾回收时promotion failed是个很头痛的问题,一般可能是两种原因产生,第一个原因是救助空间不够,救助空间里的对象还不应该被移动到年老代,但年轻代又有很多对象需要放入救助空间;第二个原因是年老代没有足够的空间接纳来自年轻代的对象;这两种情况都会转向Full GC,网站停顿时间较长。

解决方方案一:

第一个原因我的最终解决办法是去掉救助空间,设置-XX:SurvivorRatio=65536 -XX:MaxTenuringThreshold=0即可,第二个原因我的解决办法是设置CMSInitiatingOccupancyFraction为某个值(假设70),这样年老代空间到70%时就开始执行CMS,年老代有足够的空间接纳来自年轻代的对象。

解决方案一的改进方案:

又有改进了,上面方法不太好,因为没有用到救助空间,所以年老代容易满,CMS执行会比较频繁。我改善了一下,还是用救助空间,但是把救助空间加大,这样也不会有promotion failed。具体操作上,32位Linux和64位Linux好像不一样,64位系统似乎只要配置MaxTenuringThreshold参数,CMS还是有暂停。为了解决暂停问题和promotion failed问题,最后我设置-XX:SurvivorRatio=1 ,并把MaxTenuringThreshold去掉,这样即没有暂停又不会有promotoin failed,而且更重要的是,年老代和永久代上升非常慢(因为好多对象到不了年老代就被回收了),所以CMS执行频率非常低,好几个小时才执行一次,这样,服务器都不用重启了。

-Xmx4000M -Xms4000M -Xmn600M -XX:PermSize=500M -XX:MaxPermSize=500M -Xss256K -XX:+DisableExplicitGC -XX:SurvivorRatio=1 -XX:+UseConcMarkSweepGC -XX:+UseParNewGC -XX:+CMSParallelRemarkEnabled -XX:+UseCMSCompactAtFullCollection -XX:CMSFullGCsBeforeCompaction=0 -XX:+CMSClassUnloadingEnabled -XX:LargePageSizeInBytes=128M -XX:+UseFastAccessorMethods -XX:+UseCMSInitiatingOccupancyOnly -XX:CMSInitiatingOccupancyFraction=80 -XX:SoftRefLRUPolicyMSPerMB=0 -XX:+PrintClassHistogram -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -Xloggc:log/gc.log

 

CMSInitiatingOccupancyFraction值与Xmn的关系公式

上面介绍了promontion faild产生的原因是EDEN空间不足的情况下将EDEN与From survivor中的存活对象存入To survivor区时,To survivor区的空间不足,再次晋升到old gen区,而old gen区内存也不够的情况下产生了promontion faild从而导致full gc.那可以推断出:eden+from survivor < old gen区剩余内存时,不会出现promontion faild的情况,即:
(Xmx-Xmn)*(1-CMSInitiatingOccupancyFraction/100)>=(Xmn-Xmn/(SurvivorRatior+2))  进而推断出:

CMSInitiatingOccupancyFraction <=((Xmx-Xmn)-(Xmn-Xmn/(SurvivorRatior+2)))/(Xmx-Xmn)*100

例如:

当xmx=128 xmn=36 SurvivorRatior=1时 CMSInitiatingOccupancyFraction<=((128.0-36)-(36-36/(1+2)))/(128-36)*100 =73.913

当xmx=128 xmn=24 SurvivorRatior=1时 CMSInitiatingOccupancyFraction<=((128.0-24)-(24-24/(1+2)))/(128-24)*100=84.615…

当xmx=3000 xmn=600 SurvivorRatior=1时  CMSInitiatingOccupancyFraction<=((3000.0-600)-(600-600/(1+2)))/(3000-600)*100=83.33

CMSInitiatingOccupancyFraction低于70% 需要调整xmn或SurvivorRatior值。

令:

网上一童鞋推断出的公式是::(Xmx-Xmn)*(100-CMSInitiatingOccupancyFraction)/100>=Xmn 这个公式个人认为不是很严谨,在内存小的时候会影响xmn的计算。

 

关于实际环境的GC参数配置见:实例分析   监测工具见JVM监测

参考:

JAVA HOTSPOT VM(http://www.helloying.com/blog/archives/164

JVM 几个重要的参数 (校长)

java jvm 参数 -Xms -Xmx -Xmn -Xss 调优总结

Java HotSpot VM Options

http://bbs.weblogicfans.net/archiver/tid-2835.html

Frequently Asked Questions About the Java HotSpot VM

Java SE HotSpot at a Glance

Java性能调优笔记(内附测试例子 很有用)

说说MaxTenuringThreshold这个参数

分享到:
评论

相关推荐

    JVM系列之性能调优参考手册(实践篇).pdf

    标题《JVM系列之性能调优参考手册(实践篇)》涉及的知识点主要集中在Java虚拟机(JVM)性能调优的实践操作。JVM作为Java程序运行的基础环境,对程序性能有着决定性影响。本手册的目的是指导开发者如何对JVM进行性能...

    深入JVM系列-JIT编译详解1

    "深入JVM系列-JIT编译详解1" 在这篇文章中,我们将深入探讨JVM中的JIT编译技术。JIT(Just In Time)编译器是一种即时编译技术,它可以加速Java程序的执行速度。 JIT编译过程 -------- 在执行Java程序时,JVM会将...

    JVM系列之一[类文件结构].docx

    《JVM系列之一:深入理解类文件结构》 Java虚拟机(JVM)是Java程序的核心执行环境,它负责解释和执行字节码。本文将详细剖析JVM中的类文件结构,这是理解Java程序运行机制的基础。 首先,每个Java源代码文件编译...

    深入JVM系列-逃逸分析、同步省略、栈上分配、标量替换1

    《深入JVM系列:逃逸分析、同步省略、栈上分配与标量替换解析》 逃逸分析(Escape Analysis)是Java虚拟机中的一个重要优化技术,它通过对程序进行跨函数全局的数据流分析,判断一个新创建的对象是否会被外部方法...

    jvm系列(一)java类地加载机制.doc

    JVM系列(一):Java类的加载机制 类加载机制是 JVM 中的一种机制,将类的.class 文件中的二进制数据读入到内存中,并将其放在运行时数据区的方法区内,然后在堆区创建一个对象,用来封装类在方法区内的数据结构。...

    JVM系列-第1章-JVM与Java体系结构

    本系列博客主要是面向 Java 8 的虚拟机,主要参考尚硅谷的 JVM 视频教程,整理不易,所以图片打上了一些水印,还请读者见谅。后续可能会加上一些补充的东西。 在学习 JVM 之前,我们首先需要了解 Java 体系架构。...

    jvm系列一java类的加载机制.doc

    Java虚拟机(JVM)系列的第一部分主要探讨的是Java类的加载机制,这是一个关键的运行时过程,确保程序能够正确地使用和执行类。类加载机制涉及到类从磁盘读取到内存,以及如何在JVM中管理和表示这些类。 1. 类的...

    JVM基础系列

    ### JVM基础系列——深入了解Java虚拟机的重要性 #### 一、引言 随着Java技术的不断发展,Java虚拟机(JVM)已成为软件开发人员不可或缺的核心技能之一。对于初学者而言,掌握JVM的基础知识不仅可以帮助深入理解Java...

    能让你成为一个优秀的 Java 全栈程序员的系统化系列教程

    Java 基础系列: Java 基础核心总结 Java 代理 Java 反射 Java 集合 String、StringBuffer 和 StringBuilder Java 中的语法糖 深入理解 static 关键字 深入理解 Java 变量 深入理解 final、...JVM 系列 Linux 系列

    JVM指令手册详细完整版.pdf

    本资源是关于JVM指令的详细手册,涵盖了JVM指令的各种系列命令,包括未归类系列、const系列、push系列、ldc系列、load系列等。每个系列命令都有其特定的功能和用途,下面我们将逐一详细介绍每个系列命令的作用和用法...

    JVM中文指令手册.pdf

    1. JVM指令类型:JVM指令可以分为不同类型,包括将常量推送到操作数栈的指令(const系列指令),以及用于将单个数值(如int、long、float、double)推送到操作数栈的指令(iconst系列、lconst系列、fconst系列、d...

    JVM系列之String.intern的性能解析

    在Java虚拟机(JVM)中,`String.intern()` 是一个非常特殊且重要的方法,它与字符串常量池紧密相关。字符串常量池是一种内存优化机制,存储了程序中所有的字符串字面值和通过 `intern()` 方法添加的字符串。这个池...

    jvm 详细介绍,了解jvm各个组成部分和功能

    JVM 指令系统是指虚拟机所支持的一系列操作指令,这些指令用于实现 Java 程序的各种功能。虽然理论上可以支持 256 条指令,但目前常用的指令集大约有 160 条左右。JVM 的指令集采用了固定长度的格式,每条指令都是由...

    小菜鸟系列-JVM体系结构

    **小菜鸟系列-JVM体系结构** Java虚拟机(JVM)是Java平台的核心组成部分,它为Java程序提供了跨平台的运行环境。理解JVM的体系结构对于优化代码性能、排查故障以及深入理解Java编程至关重要。在本文中,我们将探讨...

    狂神说JVM探究.rar

    这份资料出自B站上的【狂神说Java】系列教程,为快速入门JVM提供了详实的笔记。以下是根据这些资源可能包含的一些关键知识点的详细解析: 1. **JVM概述**: - JVM是Java平台的核心组成部分,它是一个运行Java字节...

    慢慢琢磨jvm 经典

    这一过程涉及JVM的内部指令集,类似于不同CPU系列的汇编语言,但具有跨平台兼容性。 #### 存储管理:内存中的虚拟世界 JVM的存储部分尤为重要,尤其是对于程序的健壮性和效率而言。与硬盘存储无关,JVM的存储机制...

    自己动手写JVM

    包含了三个资源:自己动手写JVM系列(go语言描述),Java虚拟机规范第8版英文版,Java编程语言规范第8版英文版。适合学习JVM基本原理,了解Java部分语法的实现原理。因虚拟机是用go语言所写,需要先简单了解下go语言...

    JVM基础.doc

    **JVM指令集** 包含了一系列操作码,用于控制Java程序的执行。例如,`aload_0`用于加载对象引用到栈顶。 **并发程序设计** 需要注意: - **锁机制**:保证了对共享资源的正确访问。 - **缓存一致性**:基于MESI协议...

Global site tag (gtag.js) - Google Analytics