`

JVM内存结构

    博客分类:
  • JVM
阅读更多


1.1     JVM运行

ClassLoader->RUNNTIME DATA AREA->EXECUTION ENGINE->NATIVE INTERFACE->NATIVE LIBRARIES

Class Loader:负责加载类到内存

RUNNTIME DATA AREA:负责

EXECUTION ENGINE:  解释器Interpreter,负责解释命令,提交到操作系统

NATIVE INTERFACE: NATIVE METHOD STATCK中登记NATIVE方法,在Executive Engine执行时加载native libraies.

 

 CLassLoader

类加载器的作用是加 载类文件到内存,比如编写一个HelloWord.java程序,然后通过javac编译成class文件,那怎么才能加载到内存中被执行呢?Class Loader承担的就是这个责任,那不可能随便建立一个.class文件就能被加载的,Class Loader加载的class文件是有格式要求,在《JVM Specification》中式这样定义Class文件的结构:

ClassFile {

 u4 magic;

u2 minor_version;

u2 major_version;

u2 constant_pool_count;

cp_info constant_pool[constant_pool_count-1];

u2 access_flags;

u2 this_class;

u2 super_class;

u2 interfaces_count;

u2 interfaces[interfaces_count];

u2 fields_count;

field_info fields[fields_count];

u2 methods_count;

method_info methods[methods_count];

u2 attributes_count;

attribute_info attributes[attributes_count];

}

需要详细了解的话,可以仔细阅读《JVM Specification》的第四章“The class File Format”,这里不再详细说明。

友情提示:Class Loader只管加载,只要符合文件结构就加载,至于说能不能运行,则不是它负责的,那是由Execution Engine负责的。

Execution Engine 执行引擎

执行引擎也叫做解释器(Interpreter),负责解释命令,提交操作系统执行。

Native Interface本地接口

本地接口的作用是融合不同的编程语言为Java所用,它的初衷是融合C/C++程序,Java诞生的时候是C/C++横行的时候,要想立足,必须有一个聪明的、睿智的调用C/C++程序,于是就在内存中专门开辟了一块区域处理标记为native的代码,它的具体做法是Native Method Stack中登记native方法,在Execution Engine执行时加载native libraies。目前该方法使用的是越来越少了,除非是与硬件有关的应用,比如通过Java程序驱动打印机,或者Java系统管理生产设备,在企业级应用中已经比较少见,因为现在的异构领域间的通信很发达,比如可以使用Socket通信,也可以使用Web Service等等,不多做介绍。

 

NATIVE METHOD STATCK中登记NATIVE方法,在Executive Engine执行时加载native libraies.

1.2     RUNTIME AREA

运行数据区是整个JVM的重点。我们所有写的程序都被加载到这里,之后才开始运行,Java生态系统如此的繁荣,得益于该区域的优良自治。

 

 

PROGEAM COUNTER REGISTER

线程私有、指向下一条要很执行的指令

JAVA STACK

线程私有、存储局部变量表、操作栈、动态链接、方法出口

NATIVE METHOD STACK

为虚拟机使用到的Native 方法服务

HEAP

线程共享

所有的对象实例以及数组都要在堆上分配

回收器主要管理的对象

 

MEATHOD AREA

线程共享的内存区域

非堆主要区域

存储类信息、常量、静态变量、即时编译器编译后的代码

 

1.2.1     程序计数器

程序计数器(Program Counter Register) 是一块较小的内存空间,它的作用可以看做是当前线程所执行的字节码的行号指示器。在虚拟机的概念模型里(仅是概念模型,各种虚拟机可能会通过一些更高效的 方式去实现),字节码解释器工作时就是通过改变这个计数器的值来选取下一条需要执行的字节码指令,分支、循环、跳转、异常处理、线程恢复等基础功能都需要 依赖这个计数器来完成。

 

由于Java 虚拟机的多线程是通过线程轮流切换并分配处理器执行时间的方式来实现

的,在任何一个确定的时刻,一个处理器(对于多核处理器来说是一个内核)只会执行

一条线程中的指令。因此,为了线程切换后能恢复到正确的执行位置,每条线程都需要

有一个独立的程序计数器,各条线程之间的计数器互不影响,独立存储,我们称这类内

存区域为“线程私有”的内存。

 

如果线程正在执行的是一个Java 方法,这个计数器记录的是正在执行的虚拟机字节

码指令的地址;如果正在执行的是Natvie 方法,这个计数器值则为空(Undefined)。此

内存区域是唯一一个在Java 虚拟机规范中没有规定任何OutOfMemoryError 情况的区域。

 

1.2.2     

与程序计数器一样,Java 虚拟机栈(Java Virtual Machine Stacks)也是线程私有的,

它的生命周期与线程相同。虚拟机栈描述的是Java 方法执行的内存模型:每个方法被执

行的时候都会同时创建一个栈帧(Stack Frame①)用于存储局部变量表、操作栈、动态链接、方法出口等信息。

每一个方法被调用直至执行完成的过程,就对应着一个栈帧在虚拟机栈中从入栈到出栈的过程。

 经常有人把Java 内存区分为堆内存(Heap)和栈内存(Stack),这种分法比较粗

糙,Java 内存区域的划分实际上远比这复杂。这种划分方式的流行只能说明大多数程序

员最关注的、与对象内存分配关系最密切的内存区域是这两块。

 

其中所指的“堆”在后面会专门讲述,而所指的“栈”就是现在讲的虚拟机栈,或者说是虚拟机栈中的局部变量表部分。

 

局部变量表存放了编译期可知的各种基本数据类型(booleanbytecharshortint

floatlongdouble)、对象引用(reference 类型,它

不等同于对象本身,根据不同的虚拟机实现,它可能是一个指向对象起始地址的引用指针,也可能指向一个代表对象的句柄或者其他与此对象相关的位置)和returnAddress 类型(指向了一条字节码指令的地址)。

其中64 位长度的long double 类型的数据会占用个局部变量空间(Slot),其余

的数据类型只占用个。

局部变量表所需的内存空间在编译期间完成分配,当进入一个方法时,这个方法需要在帧中分配多大的局部变量空间是完全确定的,在方法运行期间不会改变局部变量表的大小。

 

Java 虚拟机规范中,对这个区域规定了两种异常状况:如果线程请求的栈深度大

于虚拟机所允许的深度,将抛出StackOverflowError 异常;如果虚拟机栈可以动态扩展

(当前大部分的Java 虚拟机都可动态扩展,只不过Java 虚拟机规范中也允许固定长度的

虚拟机栈),当扩展时无法申请到足够的内存时会抛出OutOfMemoryError 异常。

 

1.2.3     本地方法栈

本地方法栈(Native Method Stacks)与虚拟机栈所发挥的作用是非常相似的,其

区别不过是虚拟机栈为虚拟机执行Java 方法(也就是字节码)服务,而本地方法栈则

是为虚拟机使用到的Native 方法服务。虚拟机规范中对本地方法栈中的方法使用的语

言、使用方式与数据结构并没有强制规定,因此具体的虚拟机可以自由实现它。甚至

有的虚拟机(譬如Sun HotSpot 虚拟机)直接就把本地方法栈和虚拟机栈合二为一。

与虚拟机栈一样,本地方法栈区域也会抛出StackOverflowError OutOfMemoryError

异常。

 

1.2.4     Java 

对于大多数应用来说,Java 堆(Java Heap)是Java 虚拟机所管理的内存中最大的

一块。

Java 堆是被所有线程共享的一块内存区域,在虚拟机启动时创建。此内存区域的

唯一目的就是存放对象实例,几乎所有的对象实例都在这里分配内存。这一点在Java 

拟机规范中的描述是:所有的对象实例以及数组都要在堆上分配,但是随着JIT 编译器

的发展与逃逸分析技术的逐渐成熟,栈上分配、标量替换优化技术将会导致一些微妙

的变化发生,所有的对象都分配在堆上也渐渐变得不是那么“绝对”了。

 

Java 堆是垃圾收集器管理的主要区域,因此很多时候也被称做“GC 堆”(Garbage

Collected Heap,幸好国内没翻译成“垃圾堆”)。如果从内存回收的角度看,由于现在

收集器基本都是采用的分代收集算法,所以Java 堆中还可以细分为:新生代和老年代;

再细致一点的有Eden 空间、From Survivor 空间、To Survivor 空间等。

如果从内存分配的角度看,线程共享的Java 堆中可能划分出多个线程私有的分配缓冲区(Thread LocalAllocation BufferTLAB)。不过,无论如何划分,都与存放内容无关,无论哪个区域,存储的都仍然是对象实例,进一步划分的目的是为了更好地回收内存,或者更快地分配内存。

 

根据Java 虚拟机规范的规定,Java 堆可以处于物理上不连续的内存空间中,只要

逻辑上是连续的即可,就像我们的磁盘空间一样。在实现时,既可以实现成固定大小

的,也可以是可扩展的,不过当前主流的虚拟机都是按照可扩展来实现的(通过-Xmx

-Xms 控制)。如果在堆中没有内存完成实例分配,并且堆也无法再扩展时,将会抛出

OutOfMemoryError 异常。

 

1.2.5     方法区

方法区(Method Area)与Java 堆一样,是各个线程共享的内存区域,它用于存

储已被虚拟机加载的类信息、常量、静态变量、即时编译器编译后的代码等数据。虽

Java 虚拟机规范把方法区描述为堆的一个逻辑部分,但是它却有一个别名叫做Non-

Heap(非堆),目的应该是与Java 堆区分开来。

 

对于习惯在HotSpot 虚拟机上开发和部署程序的开发者来说,很多人愿意把方法区

称为“永久代”(Permanent Generation),本质上两者并不等价,仅仅是因为HotSpot 

拟机的设计团队选择把GC 分代收集扩展至方法区,或者说使用永久代来实现方法区而

已。对于其他虚拟机(如BEA JRockitIBM J9 等)来说是不存在永久代的概念的。即

使是HotSpot 虚拟机本身,根据官方发布的路线图信息,现在也有放弃永久代并“搬家”

Native Memory 来实现方法区的规划了。

 

Java 虚拟机规范对这个区域的限制非常宽松,除了和Java 堆一样不需要连续的内

存和可以选择固定大小或者可扩展外,还可以选择不实现垃圾收集。相对而言,垃圾

收集行为在这个区域是比较少出现的,但并非数据进入了方法区就如永久代的名字一

样“永久”存在了。这个区域的内存回收目标主要是针对常量池的回收和对类型的卸

载,一般来说这个区域的回收“成绩”比较难以令人满意,尤其是类型的卸载,条件

相当苛刻,但是这部分区域的回收确实是有必要的。在Sun 公司的BUG 列表中,曾出

现过的若干个严重的BUG 就是由于低版本的HotSpot 虚拟机对此区域未完全回收而导

致内存泄漏。

根据Java 虚拟机规范的规定, 当方法区无法满足内存分配需求时, 将抛出

OutOfMemoryError 异常。

 

1.2.6     运行时常量池

 

运行时常量池(Runtime Constant Pool)是方法区的一部分。Class 文件中除了有

类的版本、字段、方法、接口等描述等信息外,还有一项信息是常量池(Constant Pool

Table),用于存放编译期生成的各种字面量和符号引用,这部分内容将在类加载后存放

到方法区的运行时常量池中。

 

Java 虚拟机对Class 文件的每一部分(自然也包括常量池)的格式都有严格的规

定,每一个字节用于存储哪种数据都必须符合规范上的要求,这样才会被虚拟机认可、

装载和执行。但对于运行时常量池,Java 虚拟机规范没有做任何细节的要求,不同的

提供商实现的虚拟机可以按照自己的需要来实现这个内存区域。不过,一般来说,除

了保存Class 文件中描述的符号引用外,还会把翻译出来的直接引用也存储在运行时常

量池中。

 

运行时常量池相对于Class 文件常量池的另外一个重要特征是具备动态性,Java 

言并不要求常量一定只能在编译期产生,也就是并非预置入Class 文件中常量池的内容

才能进入方法区运行时常量池,运行期间也可能将新的常量放入池中,这种特性被开发

人员利用得比较多的便是String 类的intern() 方法。

 

既然运行时常量池是方法区的一部分,自然会受到方法区内存的限制,当常量池无

法再申请到内存时会抛出OutOfMemoryError 异常

1.2.7     直接内存

直接内存(Direct Memory)并不是虚拟机运行时数据区的一部分,也不是Java

虚拟机规范中定义的内存区域,但是这部分内存也被频繁地使用,而且也可能导致

OutOfMemoryError 异常出现,所以我们放到这里一起讲解。

JDK 1.4 中新加入了NIONew Input/Output)类,引入了一种基于通道(Channel

与缓冲区(Buffer)的I/O 方式,它可以使用Native 函数库直接分配堆外内存,然

后通过一个存储在Java 堆里面的DirectByteBuffer 对象作为这块内存的引用进行

操作。这样能在一些场景中显著提高性能,因为避免了在Java 堆和Native 堆中来

回复制数据。

显然,本机直接内存的分配不会受到Java 堆大小的限制,但是,既然是内存,则

肯定还是会受到本机总内存(包括RAM SWAP 区或者分页文件)的大小及处理器

寻址空间的限制。服务器管理员配置虚拟机参数时,一般会根据实际内存设置-Xmx

等参数信息,但经常会忽略掉直接内存,使得各个内存区域的总和大于物理内存限制

(包括物理上的和操作系统级的限制),从而导致动态扩展时出现OutOfMemoryError

异常。

 http://www.blogjava.net/nkjava/archive/2012/03/14/371831.html

分享到:
评论

相关推荐

    JVM 内存结构及配置总结

    1. **JVM内存结构** JVM内存主要分为以下几个区域: - **方法区(Method Area)**:这是所有线程共享的区域,存储类信息、常量、静态变量、即时编译后的代码等。在Java 8以前,这部分也被称为永久代(Permanent ...

    JVM内存结构.pdf

    ### JVM内存结构详解 #### 一、概述 Java虚拟机(JVM)作为Java程序的运行环境,其核心组件之一便是内存管理系统。理解JVM的内存布局对于开发高性能的应用程序至关重要。本文将详细介绍JVM内存结构及其各个组成部分...

    解析JVM内存结构和6大区域

    JVM 内存结构和 6 大区域 JVM 是 Java虚拟机,它是 Java 语言的核心组件之一,为 Java 程序提供了运行环境。JVM 的内存结构是 Java 程序的基础,它的设计和实现对 Java 程序的性能和可靠性产生了深远的影响。 JVM ...

    Jvm性能优化-JVM内存结构原理分析03

    "Jvm性能优化-JVM内存结构原理分析03" Jvm性能优化是Java虚拟机(JVM)中非常重要的一部分,它对Jvm的性能产生了很大的影响。本文将从Jvm内存结构的角度来分析Jvm性能优化的原理。 Jvm内存结构主要分为五部分:堆...

    JVM内存结构.zip

    JVM内存结构的理解对于优化Java程序性能、避免内存溢出等问题至关重要。以下是对JVM内存结构的详细阐述: 1. **堆内存(Heap)** 堆内存是Java程序中最大的一块内存区域,用于存储对象实例。所有通过`new`关键字...

    JVM内存结构笔记.rar

    总之,深入理解JVM内存结构及其管理机制,有助于我们编写更高效、更稳定的Java程序,并能有效地处理内存相关问题。这份"JVM内存结构笔记"将详细阐述这些内容,是学习和研究JVM内存管理的重要参考资料。

    linux & JVM内存结构分析

    总结来说,Linux和JVM内存结构分析是提升系统效率和稳定性的重要手段。通过阅读和分析上述文件,我们可以深入了解系统资源的使用情况,进而进行针对性的调优。对于IT专业人士而言,掌握这些知识不仅能提升工作效率,...

    一文搞懂JVM内存结构

    了解JVM内存结构对于优化代码性能、防止内存泄漏以及理解程序运行时的行为至关重要。本文将深入探讨JVM内存的各个区域,帮助你全面掌握JVM的工作原理。 首先,JVM内存主要分为以下几个部分: 1. **程序计数器...

    JVM内存结构-JVM体系结构 程序计数器 虚拟机栈 本地方法栈 堆 方法区

    JVM内存结构-JVM体系结构 程序计数器 虚拟机栈 本地方法栈 堆 方法区

    深入理解JVM内存结构及运行原理全套视频加资料

    2019最新深入理解JVM内存结构及运行原理(JVM调优)高级核心课程视频教程下载。JVM是Java知识体系中的重要部分,对JVM底层的了解是每一位Java程序员深入Java技术领域的重要因素。本课程试图通过简单易懂的方式,系统...

    Java虚拟机 JVM 内存结构介绍

    Java虚拟机(JVM)内存结构是理解Java...总之,JVM内存结构是Java平台的核心特性,它为程序提供了动态的内存分配和管理,确保了程序的稳定性和效率。深入理解这一结构,有助于开发者写出更高效、更健壮的Java应用程序。

    JVM内存结构、Java内存模型、Java对象模型1

    Java内存模型(JMM)与JVM内存结构不同,它是针对多线程环境下内存访问的抽象模型。JMM确保在多线程环境下,共享变量的读写操作具有正确的顺序和可见性,通过volatile、synchronized等关键字来实现这一目标。JMM关注...

    java jvm内存结构 调优

    java jvm内存结构 调优

    jvm内存基本结构及垃圾回收

    理解JVM内存结构和垃圾回收机制对于Java开发者至关重要,它可以帮助我们更好地优化程序性能,避免内存溢出等问题。通过调整JVM参数,如堆大小、新生代与老年代的比例、垃圾收集器的选择等,我们可以根据应用的需求...

    1. JVM 内存结构的组成、各部分功能作用,学会利用内存诊断工具排查内存相关问题;2. JVM 的招牌-jvm.zip

    了解JVM内存结构及其功能对于优化Java应用程序的性能和排查内存问题至关重要。 首先,我们来详细探讨JVM的内存结构。在Java中,内存主要分为以下几个区域: 1. **程序计数器(Program Counter Register)**:每个...

    JDK8的JVM内存结构,元空间替代永久代成为方法区及常量池的变化1

    在JDK8中,JVM内存结构发生了显著变化,尤其是元空间(MetaSpace)替代了永久代(Permanent Generation)作为方法区的一部分。这种方法区的调整是由于永久代存在的一些问题,比如大小设定困难,容易引发溢出,以及给...

    深入理解JVM内存结构及运行原理全套视频加资料.txt

    2019最新深入理解JVM内存结构及运行原理(JVM调优)高级核心课程视频教程下载。JVM是Java知识体系中的重要部分,对JVM底层的了解是每一位Java程序员深入Java技术领域的重要因素。本课程试图通过简单易懂的方式,系统...

    jvm内存结构-机器指令的执行模式演示demo代码

    jvm内存结构-栈的变化,机器指令的格式/执行模式文章中的demo代码。

Global site tag (gtag.js) - Google Analytics