原文引用自:http://triffic.iteye.com/blog/1123760
BI中如何配置模式文件(Schema)
在这里系统的看看构成模式文件的元素:
首先说明一点:这个sample中每一部分在形式上有很多重复的地方,为了尽可能地讲的完全,所以在讲解的过程中,
每一部分提取形式上不重复的部分,然后加入该部分的一些可选项,同时可以查阅FoodMart.xml这个Schema文件。
从宏观上来看,配置一个Schema大致可以分成五部分,分别是:1、Table配置 2、Dimension配置 3、Measure配置 4、VirtualCube配置 5、访问权限配置。在本sample中已经标记出,下面分析每一部分中的元素构成。
<第一部分>
<Table name="sales_fact_1997">
<AggExclude name="agg_c_14_sales_fact_1997" />
<AggName name="agg_c_special_sales_fact_1997">
<AggFactCount column="FACT_COUNT"/>
<AggIgnoreColumn column="foo"/>
<AggForeignKey factColumn="product_id" aggColumn="PRODUCT_ID" />
<AggMeasure name="[Measures].[Unit Sales]" column="UNIT_SALES_SUM" />
<AggLevel name="[Time].[Year]" column="TIME_YEAR" />
</AggName>
<AggPattern pattern="agg_sales_fact_1997_.*">
....
<AggExclude name="agg_sales_fact_1997_olddata" />
<AggExclude pattern="agg_sales_fact_1997_test.*" />
</AggPattern>
</Table>
</第一部分>
1、首先给出表名,在一般情况下,一个Cube是建立在一张事实表之上的,所以Table name=某事实表,但也可以在一张基础表上建立Cube。
2、在本sample中加入了一个聚合表(aggregate table),在一个Cube中可以加,也可以不加,需要根据实际情况来决定。聚合表的作用简单的说表现在考虑报表设计时,通过聚合预先计算好数据汇总,从而改进查询响应的时间。聚合表的内容非常丰富,在这里只讲解最基本的概念,进一步了解请访问官网http://mondrian.pentaho.com/documentation/aggregate_tables.php,接下来简单的理解构成聚合表的元素。
3、AggExclude name,这里给出的表名旨在告诉Mondrian该表不是相应事实表的聚合表。
4、AggName name,这里给出的表名告诉Mondrian该表是相应事实表的聚合表
5、AggFactCount column="FACT_COUNT",这个字段在每一张聚合表中都存在,记录了相应的事实表中有多少列写入到聚合表中。
6、AggIgnoreColumn column,该列名的作用是告知Mondrian该列是已知的,应该被忽略。
7、<AggForeignKey factColumn="product_id" aggColumn="PRODUCT_ID"/>这里给出了一个映射关系,即事实表中的product_id列对应了聚合表中的PRODUCT_ID列。
8、AggMeasure name和AggLevel name这两个元素同样也给出了一个映射关系,即把在Cube的模式文件中定义的逻辑名映射到聚合表中的列名。
9、AggPattern pattern使用了正则表达式,把符合该pattern的聚合表包括进来。如在本sample中把前缀为agg_sales_fact_1997_的聚合表全部包括进来作为孩子元素。
10、AggPattern pattern中的AggExclude name元素,该元素很明确地指出在已包括进来的聚合表中,剔除某特定的聚合表。
11、AggPattern pattern中的AggExclude pattern元素,该元素的作用表现在把符合AggExclude pattern的正则表达式的聚合表剔除。
12、第一部分的完整框架是:
<Table>
<AggExclude>
<AggName>
<AggFactCount/>
<AggIgnoreColumn/>
<AggForeignKey/>
<AggMeasure/>
<AggLevel/>
</AggName>
<AggPattern>
<AggExclude name/>
<AggExclude pattern/>
</AggPattern>
</Table>
<第二部分>
<DimensionUsage name="Store" source="Store" foreignKey="store_id"/>
<Dimension name="Promotion Media" foreignKey="promotion_id">
<Hierarchy hasAll="true" allMemberName="All Media" primaryKey="promotion_id" defaultMember="All Media">
<Table name="promotion"/>
<Level name="Media Type" column="media_type" uniqueMembers="true"/>
</Hierarchy>
</Dimension>
<Dimension name="Customers" foreignKey="customer_id">
<Hierarchy hasAll="true" allMemberName="All Customers" primaryKey="customer_id">
<Table name="customer"/>
<Level name="City" column="city" uniqueMembers="false"/>
<Level name="Name" column="customer_id" type="Numeric" uniqueMembers="true">
<NameExpression>
<SQL dialect="oracle">"fname" || ' ' || "lname"</SQL>
<SQL dialect="access">fname + ' ' + lname</SQL>
<SQL dialect="postgres">"fname" || ' ' || "lname"</SQL>
<SQL dialect="mysql">CONCAT(`customer`.`fname`, ' ', `customer`.`lname`)</SQL>
<SQL dialect="mssql">fname + ' ' + lname</SQL>
<SQL dialect="derby">"customer"."fullname"</SQL>
<SQL dialect="db2">CONCAT(CONCAT("customer"."fname", ' '), "customer"."lname")</SQL>
<SQL dialect="luciddb">"fname" || ' ' || "lname"</SQL>
<SQL dialect="generic">fullname</SQL>
</NameExpression>
<OrdinalExpression>
<SQL dialect="oracle">"fname" || ' ' || "lname"</SQL>
<SQL dialect="access">fname + ' ' + lname</SQL>
<SQL dialect="postgres">"fname" || ' ' || "lname"</SQL>
<SQL dialect="mysql">CONCAT(`customer`.`fname`, ' ', `customer`.`lname`)</SQL>
<SQL dialect="mssql">fname + ' ' + lname</SQL>
<SQL dialect="derby">"customer"."fullname"</SQL>
<SQL dialect="db2">CONCAT(CONCAT("customer"."fname", ' '), "customer"."lname")</SQL>
<SQL dialect="luciddb">"fname" || ' ' || "lname"</SQL>
<SQL dialect="generic">fullname</SQL>
</OrdinalExpression>
<Property name="Gender" column="gender"/>
<Property name="Marital Status" column="marital_status"/>
<Property name="Education" column="education"/>
<Property name="Yearly Income" column="yearly_income"/>
</Level>
</Hierarchy>
</Dimension>
</第二部分>
1、DimensionUsage元素:如果在之前定义了共享维(shared dimensions),并且在该Cube中想要使用该共享维,
那么就如<DimensionUsage name="Store" source="Store" foreignKey="store_id"/>使用,通过store_id把
事实表sales_fact_1997和基础表Store相连接。
2、<Dimension name="Promotion Media" foreignKey="promotion_id">
<Hierarchy hasAll="true" allMemberName="All Media" primaryKey="promotion_id" defaultMember="All Media">
<Table name="promotion"/>
<Level name="Media Type" column="media_type" uniqueMembers="true"/>
</Hierarchy>
</Dimension>
定义了一个名为Promotion Media的维,通过promotion_id连接基础表promotion和事实表sales_fact_1997。
<Level name="Media Type" column="media_type" uniqueMembers="true"/>定义了一个层次中的级别,选择了基础表promotion的media_type字段,不包括该表中的其他字段。
3、在本上面的例子中又定义了一个名为Customers的demension,通过字段customer_id连接基础表customer和事实表sales_fact_1997。接下来来解释下其他元素的作用:
<Level name="XXXX" column="XXXX" type="XXXX" uniqueMembers="XXXX">
<KeyExpression>
SQL表达式,用于该级别的key,代替了column
</KeyExpression>
<CaptionExpression>
SQL表达式,用于计算一个成员的标题,代替了Level.captionColumn
</CaptionExpression>
<ParentExpression>
SQL表达式,用于计算一个度量,代替了Level.parentColumn
</ParentExpression>
<NameExpression>
SQL表达式,用于计算一个成员的名字,代替了Level.nameColumn
</NameExpression>
<OrdinalExpression>
SQL表达式,用于对一个level的所有成员进行排序,代替了Level.ordinalColumn
</OrdinalExpression>
<Property name="XXXX" column="XXXX">
<PropertyExpression>
SQL表达式,用于计算一个属性的值,代替了Property.column
</PropertyExpression>
</Property>
</Level>
4、第二部分的完整框架是:
<DimensionUsage/>
<Dimension>
<Hierarchy>
<Table name=/>
<Level name=/>
</Hierarchy>
</Dimension>
<Dimension name>
<Hierarchy>
<Table name=/>
<Level name=/>
<Level name=>
<KeyExpression>
<SQL dialect></SQL>
</KeyExpression>
<CaptionExpression>
<SQL dialect></SQL>
</CaptionExpression>
<ParentExpression>
<SQL dialect></SQL>
</ParentExpression>
<NameExpression>
<SQL dialect></SQL>
</NameExpression>
<OrdinalExpression>
<SQL dialect></SQL>
</OrdinalExpression>
<Property name="XXXX" column="XXXX">
<PropertyExpression>
<SQL dialect></SQL>
</PropertyExpression>
</Property>
</Level>
</Hierarchy>
</Dimension>
<第三部分>
<Measure name="Unit Sales" column="unit_sales" aggregator="sum" formatString="Standard"/>
<Measure name="Promotion Sales" aggregator="sum" formatString="#,###.00">
<MeasureExpression>
<SQL dialect="oracle">(case when "sales_fact_1997"."promotion_id" = 0 then 0 else "sales_fact_1997"."store_sales" end)</SQL>
</MeasureExpression>
</Measure>
<CalculatedMember name="Profit" dimension="Measures">
<Formula>[Measures].[Store Sales] - [Measures].[Store Cost]</Formula>
<CalculatedMemberProperty name="FORMAT_STRING" value="$#,##0.00"/>
</CalculatedMember>
</第三部分>
1、第一个Measure的名字是Unit Sales,对应事实表中的unit_sales列,聚合的方法是求和(还可以是:sum,count,min,max,avg,distinct-count),求和之后的结果格式为标准格式。
2、第二个Measure的名字是Promotion Sales,在该Measure下加入了一个MeasureExpression。期望是:从事实表sales_fact_1997中挑选出promotion_id=0的所有行,然后对该事实表的store_sales进行求和(如果某行的sales_fact_1997.store_sales=0,则不对该行进行计算)
3、CalculatedMember元素是一个计算成员,在本sample中取名Profit,属于Measures维。期望是:商店的销售额减去商店的成本得到利润值,得到的值的类型是字符串类型,值的格式是$#,##0.00
4、第三部分一个完整的框架是:
<Measure>
<MeasureExpression>
<SQL/>
</MeasureExpression>
</Measure>
<CalculatedMember>
<Formula/>
<CalculatedMemberProperty/>
</CalculatedMember>
<NamedSet>
该集合的值是由公式推导出的,是Cube的组成部分
</NamedSet>
<第四部分>
<VirtualCube name="Warehouse and Sales" defaultMeasure="Store Sales">
<VirtualCubeDimension cubeName="Sales" name="Customers"/>
<VirtualCubeDimension name="Product"/>
<VirtualCubeMeasure cubeName="Sales" name="[Measures].[Sales Count]"/>
<CalculatedMember name="Profit Per Unit Shipped" dimension="Measures">
<Formula>[Measures].[Profit] / [Measures].[Units Shipped]</Formula>
</CalculatedMember>
</VirtualCube>
</第四部分>
1、VirtualCube,A cube defined by combining the dimensions and measures of one or more cubes. A measure originating from another cube can be a <CalculatedMember>.即若干个Cube中的dimension和measure相结合形成一个Cube,该Cube就叫做VirtualCube。来自另一个Cube的measure可以是该VirtualCube的计算成员。
2、在本sample中定义了一个叫Warehouse and Sales的多维虚拟分析主题,VirtualCubeDimension定义了一个来自Sales的Cube,并且选择了该Cube中的Customers维。注意在VirtualCubeDimension的定义中还有另一种方法,如<VirtualCubeDimension name="Product"/>,这是针对共享维的使用方法。
3、VirtualCubeMeasure定义了一个来自Sales的Cube,并且选择了该Cube中的Sales Count度量。
4、CalculatedMember定义了一个计算成员,使用方法和一般的Cube一样。
5、第四部分一个完整的框架是:
<VirtualCube>
<CubeUsages>
<CubeUsage>
</CubeUsage>
</CubeUsages>
<VirtualCubeDimension>
</VirtualCubeDimension>
<VirtualCubeMeasure>
</VirtualCubeMeasure>
<CalculatedMember>
</CalculatedMember>
</VirtualCube>
或者如本sample中的写法,即把在VirtualCube中要使用到的Cube写在<VirtualCubeDimension>,<VirtualCubeMeasure>和<CalculatedMember>中,
从而不需要在<CubeUsages>中定义。
<第五部分>
<Role name="California manager">
<SchemaGrant access="none">
<CubeGrant cube="Sales" access="all">
<HierarchyGrant hierarchy="[Store]" access="custom" topLevel="[Store].[Store Country]">
<MemberGrant member="[Store].[USA].[CA]" access="all"/>
<MemberGrant member="[Store].[USA].[CA].[Los Angeles]" access="none"/>
</HierarchyGrant>
<HierarchyGrant hierarchy="[Gender]" access="none"/>
</CubeGrant>
</SchemaGrant>
</Role>
</第五部分>
1、该部分属于访问控制配置文件
2、Role定义了一个访问者
3、SchemaGrant是一个访问Schema的权利的集合
4、CubeGrant是一个访问Cube的权利的集合
5、HierarchyGrant是一个访问该层次以及属于该层次的级别的权利的集合
6、MemberGrant是一个访问成员以及该成员的孩子的权利的集合
在理解上述元素的情况下,我们来了解在本sample中该部分的作用:首先定义了一个访问用户,是California manager(加州经理),他不能访问整个Schema中的Cube,但他可以访问Sales这个Cube。其次,自定义了对该Sales Cube中的Store这个层次的访问控制,他可以访问位于美国加州的store(除了洛杉矶)。最后定义了他对该Sales Cube中的Gender层次无访问权限。
7、第五部分的完整框架是:
<Role>
<SchemaGrant>
<CubeGrant>
<HierarchyGrant>
<MemberGrant/>
</HierarchyGrant>
<HierarchyGrant>
</CubeGrant>
</SchemaGrant>
</Role>
相关推荐
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
8c71b76fb2ec10cf50fc6b0308d3dcfc_9545878e2b97a84b2e089ece58da9e82
Android逆向过程学习
内容概要:本文详细介绍了基于西门子S7-200 PLC的糖果包装控制系统的设计与实现。首先阐述了PLC在工业自动化领域的优势及其在糖果包装生产线中的重要性。接着深入探讨了系统的硬件连接方式,包括传感器、执行机构与PLC的具体接口配置。随后展示了关键的编程实现部分,如糖果计数、包装执行、送膜控制、称重判断以及热封温度控制等具体梯形图代码片段。此外,还分享了一些实用的经验技巧,如防止信号抖动、PID参数优化、故障诊断方法等。最后总结了该系统的优势,强调其对提高生产效率和产品质量的重要作用。 适合人群:从事工业自动化控制、PLC编程的技术人员,尤其是对小型PLC系统感兴趣的工程师。 使用场景及目标:适用于糖果制造企业,旨在提升包装生产线的自动化程度,确保高效稳定的生产过程,同时降低维护成本并提高产品一致性。 其他说明:文中不仅提供了详细的理论讲解和技术指导,还结合实际案例进行了经验分享,有助于读者更好地理解和掌握相关知识。
内容概要:本文详细介绍了参与西门子杯比赛中关于三部十层电梯系统的博图V15.1程序设计及其WinCC画面展示的内容。文中不仅展示了电梯系统的基本架构,如抢单逻辑、方向决策、状态机管理等核心算法(采用SCL语言编写),还分享了许多实际调试过程中遇到的问题及解决方案,例如未初始化变量导致的异常行为、状态机遗漏空闲状态、WinCC画面动态显示的挑战以及通信配置中的ASCII码解析错误等问题。此外,作者还特别提到一些创意性的设计,如电梯同时到达同一层时楼层显示器变为闪烁爱心的效果,以及节能模式下电梯自动停靠中间楼层的功能。 适合人群:对PLC编程、工业自动化控制、电梯调度算法感兴趣的工程技术人员,尤其是准备参加类似竞赛的学生和技术爱好者。 使用场景及目标:适用于希望深入了解PLC编程实践、掌握电梯群控系统的设计思路和技术要点的人士。通过学习本文可以更好地理解如何利用PLC进行复杂的机电一体化项目的开发,提高解决实际问题的能力。 其他说明:文章风格幽默诙谐,将严肃的技术话题融入轻松的生活化比喻之中,使得原本枯燥的专业知识变得生动有趣。同时,文中提供的经验教训对于从事相关领域的工作者来说非常宝贵,能够帮助他们少走弯路并激发更多创新思维。
慧荣量产工具合集.zip
内容概要:本文详细介绍了永磁同步电机(PMSM)的FOC(磁场定向控制)和SVPWM(空间矢量脉宽调制)算法的仿真模型。首先解释了FOC的基本原理及其核心的坐标变换(Clark变换和Park变换),并给出了相应的Python代码实现。接下来探讨了SVPWM算法的工作机制,包括扇区判断和占空比计算的方法。此外,文章还讨论了电机的PI双闭环控制结构,即速度环和电流环的设计与实现。文中不仅提供了详细的理论背景,还分享了一些实用的编程技巧和注意事项,帮助读者更好地理解和应用这些算法。 适合人群:电气工程专业学生、从事电机控制系统开发的技术人员以及对永磁同步电机控制感兴趣的科研人员。 使用场景及目标:① 学习和掌握永磁同步电机的FOC控制和SVPWM算法的具体实现;② 提供丰富的代码示例和实践经验,便于快速搭建和调试仿真模型;③ 探讨不同参数设置对电机性能的影响,提高系统的稳定性和效率。 其他说明:文章强调了在实际应用中需要注意的一些细节问题,如坐标变换中的系数选择、SVPWM算法中的扇区判断优化以及PI控制器的参数调整等。同时,鼓励读者通过动手实验来加深对各个模块的理解。
# 压缩文件中包含: 中文文档 jar包下载地址 Maven依赖 Gradle依赖 源代码下载地址 # 本文件关键字: jar中文文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件;
Android逆向过程学习
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
3dmax插件
# 【spring-ai-autoconfigure-vector-store-qdrant-1.0.0-M7.jar中文文档.zip】 中包含: 中文文档:【spring-ai-autoconfigure-vector-store-qdrant-1.0.0-M7-javadoc-API文档-中文(简体)版.zip】 jar包下载地址:【spring-ai-autoconfigure-vector-store-qdrant-1.0.0-M7.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【spring-ai-autoconfigure-vector-store-qdrant-1.0.0-M7.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【spring-ai-autoconfigure-vector-store-qdrant-1.0.0-M7.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【spring-ai-autoconfigure-vector-store-qdrant-1.0.0-M7-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: spring-ai-autoconfigure-vector-store-qdrant-1.0.0-M7.jar中文文档.zip,java,spring-ai-autoconfigure-vector-store-qdrant-1.0.0-M7.jar,org.springframework.ai,spring-ai-autoconfigure-vector-store-qdrant,1.0.0-M7,org.springframework.ai.vectorstore.qdr
1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
内容概要:本文详细介绍了平方根容积卡尔曼滤波(SRCKF)在永磁同步电机(PMSM)控制系统中的应用及其相对于传统CKF的优势。文章首先指出传统CKF在处理协方差矩阵时存在的数值不稳定性和非正定问题,导致系统性能下降。接着,作者通过引入SRCKF,利用Cholesky分解和QR分解来确保协方差矩阵的正定性,从而提高状态估计的精度和稳定性。文中展示了具体的电机模型和状态方程,并提供了详细的代码实现,包括状态预测、容积点生成以及观测更新等关键步骤。此外,文章还分享了实际调试过程中遇到的问题及解决方案,如选择合适的矩阵分解库和处理电机参数敏感性。最终,通过实验数据对比,证明了SRCKF在突加负载情况下的优越表现。 适合人群:从事永磁同步电机控制研究的技术人员、研究生及以上学历的研究者。 使用场景及目标:适用于需要高精度状态估计的永磁同步电机控制系统的设计与优化,特别是在处理非线性问题和提高数值稳定性方面。 其他说明:文章引用了相关领域的权威文献,如Arasaratnam的TAC论文和Zhong的《PMSM无传感器控制综述》,并强调了实际工程实践中代码调试的重要性。
# 【tokenizers-***.jar***文档.zip】 中包含: ***文档:【tokenizers-***-javadoc-API文档-中文(简体)版.zip】 jar包下载地址:【tokenizers-***.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【tokenizers-***.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【tokenizers-***.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【tokenizers-***-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: tokenizers-***.jar***文档.zip,java,tokenizers-***.jar,ai.djl.huggingface,tokenizers,***,ai.djl.engine.rust,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,djl,huggingface,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压 【tokenizers-***.jar***文档.zip】,再解压其中的 【tokenizers-***-javadoc-API文档-中文(简体)版.zip】,双击 【index.html】 文件,即可用浏览器打开、进行查看。 # 特殊说明: ·本文档为人性化翻译,精心制作,请放心使用。 ·只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; ·不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 # 温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件; # Maven依赖: ``` <dependency> <groupId>ai.djl.huggingface</groupId> <artifactId>tokenizers</artifactId> <version>***</version> </dependency> ``` # Gradle依赖: ``` Gradle: implementation group: 'ai.djl.huggingface', name: 'tokenizers', version: '***' Gradle (Short): implementation 'ai.djl.huggingface:tokenizers:***' Gradle (Kotlin): implementation("ai.djl.huggingface:tokenizers:***") ``` # 含有的 Java package(包): ``` ai.djl.engine.rust ai.djl.engine.rust.zoo ai.djl.huggingface.tokenizers ai.djl.huggingface.tokenizers.jni ai.djl.huggingface.translator ai.djl.huggingface.zoo ``` # 含有的 Java class(类): ``` ai.djl.engine.rust.RsEngine ai.djl.engine.rust.RsEngineProvider ai.djl.engine.rust.RsModel ai.djl.engine.rust.RsNDArray ai.djl.engine.rust.RsNDArrayEx ai.djl.engine.rust.RsNDArrayIndexer ai.djl.engine.rust.RsNDManager ai.djl.engine.rust.RsSymbolBlock ai.djl.engine.rust.RustLibrary ai.djl.engine.rust.zoo.RsModelZoo ai.djl.engine.rust.zoo.RsZooProvider ai.djl.huggingface.tokenizers.Encoding ai.djl.huggingface.tokenizers.HuggingFaceTokenizer ai.djl.huggingface.tokenizers.HuggingFaceTokenizer.Builder ai.djl.hu
3
pchook源码纯源码不是dll
# 【spring-ai-azure-store-1.0.0-M7.jar中文-英文对照文档.zip】 中包含: 中文-英文对照文档:【spring-ai-azure-store-1.0.0-M7-javadoc-API文档-中文(简体)-英语-对照版.zip】 jar包下载地址:【spring-ai-azure-store-1.0.0-M7.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【spring-ai-azure-store-1.0.0-M7.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【spring-ai-azure-store-1.0.0-M7.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【spring-ai-azure-store-1.0.0-M7-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: spring-ai-azure-store-1.0.0-M7.jar中文-英文对照文档.zip,java,spring-ai-azure-store-1.0.0-M7.jar,org.springframework.ai,spring-ai-azure-store,1.0.0-M7,org.springframework.ai.vectorstore.azure,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,springframework,spring,ai,azure,store,中文-英文对照API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压 【spring-ai-azure-store-1.0.0-M7.jar中文-英文对照文档.zip】,再解
内容概要:本文档是关于信捷电气XD、XL系列可编程序控制器的用户手册(硬件篇)。手册详细介绍了该系列PLC的硬件特性,包括产品概述、本体规格参数、系统构成、电源及输入输出规格、运行调试与维护、软元件切换等内容。此外,还提供了丰富的附录信息,如特殊软元件地址及功能、指令一览表、PLC功能配置表和常见问题解答。手册强调了安全操作的重要性,列出了多个安全注意事项,确保用户在正确环境下安装和使用设备,避免潜在风险。 适合人群:具备一定电气知识的专业人士,尤其是从事自动化控制系统设计、安装、调试及维护的技术人员。 使用场景及目标:①帮助用户了解XD、XL系列PLC的硬件特性和规格参数;②指导用户正确安装、接线、调试和维护设备;③提供详细的故障排查指南和技术支持信息,确保设备稳定运行;④为用户提供编程和指令使用的参考资料。 其他说明:手册不仅涵盖了硬件方面的内容,还涉及到了一些基础的软件编程概念,但更深入的编程指导请参考相关软件篇手册。用户在使用过程中遇到问题可以通过提供的联系方式获得技术支持。手册中的内容会定期更新,以适应产品改进和技术发展的需求。
# 【spring-ai-bedrock-converse-1.0.0-M7.jar中文文档.zip】 中包含: 中文文档:【spring-ai-bedrock-converse-1.0.0-M7-javadoc-API文档-中文(简体)版.zip】 jar包下载地址:【spring-ai-bedrock-converse-1.0.0-M7.jar下载地址(官方地址+国内镜像地址).txt】 Maven依赖:【spring-ai-bedrock-converse-1.0.0-M7.jar Maven依赖信息(可用于项目pom.xml).txt】 Gradle依赖:【spring-ai-bedrock-converse-1.0.0-M7.jar Gradle依赖信息(可用于项目build.gradle).txt】 源代码下载地址:【spring-ai-bedrock-converse-1.0.0-M7-sources.jar下载地址(官方地址+国内镜像地址).txt】 # 本文件关键字: spring-ai-bedrock-converse-1.0.0-M7.jar中文文档.zip,java,spring-ai-bedrock-converse-1.0.0-M7.jar,org.springframework.ai,spring-ai-bedrock-converse,1.0.0-M7,org.springframework.ai.bedrock.converse,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,springframework,spring,ai,bedrock,converse,中文API文档,手册,开发手册,使用手册,参考手册 # 使用方法: 解压 【spring-ai-bedrock-converse-1