`

深入理解Java内存模型(四)——volatile

    博客分类:
  • java
阅读更多
深入理解Java内存模型(四)——volatile

作者 程晓明 发布于 二月 05, 2013 | 34
http://www.infoq.com/cn/articles/java-memory-model-4?utm_source=infoq&utm_medium=related_content_link&utm_campaign=relatedContent_articles_clk



volatile的特性

当我们声明共享变量为volatile后,对这个变量的读/写将会很特别。理解volatile特性的一个好方法是:把对volatile变量的单个读/写,看成是使用同一个监视器锁对这些单个读/写操作做了同步。下面我们通过具体的示例来说明,请看下面的示例代码:

class VolatileFeaturesExample {
    volatile long vl = 0L;  //使用volatile声明64位的long型变量

    public void set(long l) {
        vl = l;   //单个volatile变量的写
    }

    public void getAndIncrement () {
        vl++;    //复合(多个)volatile变量的读/写
    }


    public long get() {
        return vl;   //单个volatile变量的读
    }
}
假设有多个线程分别调用上面程序的三个方法,这个程序在语意上和下面程序等价:

class VolatileFeaturesExample {
    long vl = 0L;               // 64位的long型普通变量

    public synchronized void set(long l) {     //对单个的普通 变量的写用同一个监视器同步
        vl = l;
    }

    public void getAndIncrement () { //普通方法调用
        long temp = get();           //调用已同步的读方法
        temp += 1L;                  //普通写操作
        set(temp);                   //调用已同步的写方法
    }
    public synchronized long get() {
    //对单个的普通变量的读用同一个监视器同步
        return vl;
    }
}
如上面示例程序所示,对一个volatile变量的单个读/写操作,与对一个普通变量的读/写操作使用同一个监视器锁来同步,它们之间的执行效果相同。

监视器锁的happens-before规则保证释放监视器和获取监视器的两个线程之间的内存可见性,这意味着对一个volatile变量的读,总是能看到(任意线程)对这个volatile变量最后的写入。

相关厂商内容

QCon上海技术训练营:OSGi、GitHub、Scrum深度培训,10月29-31日与您相约,了解详情! QCon上海2013“游戏服务器实践”专题:游戏服务器运维经验、架构分享、性能策略 安装QCon上海2013App,掌握最详尽的大会资讯,iOS、Andriod版本均以发布 QCon上海2013“团队文化”专题:构建持续前进的团队文化、价值观,工具与体系 11.2日QCon晚场活动”鬼脚七夜话“报名中,池建强、蔡学镛、吴翰清畅谈微信自媒体与程序人生
监视器锁的语义决定了临界区代码的执行具有原子性。这意味着即使是64位的long型和double型变量,只要它是volatile变量,对该变量的读写就将具有原子性。如果是多个volatile操作或类似于volatile++这种复合操作,这些操作整体上不具有原子性。

简而言之,volatile变量自身具有下列特性:

可见性。对一个volatile变量的读,总是能看到(任意线程)对这个volatile变量最后的写入。
原子性:对任意单个volatile变量的读/写具有原子性,但类似于volatile++这种复合操作不具有原子性。
volatile写-读建立的happens before关系

上面讲的是volatile变量自身的特性,对程序员来说,volatile对线程的内存可见性的影响比volatile自身的特性更为重要,也更需要我们去关注。

从JSR-133开始,volatile变量的写-读可以实现线程之间的通信。

从内存语义的角度来说,volatile与监视器锁有相同的效果:volatile写和监视器的释放有相同的内存语义;volatile读与监视器的获取有相同的内存语义。

请看下面使用volatile变量的示例代码:

class VolatileExample {
    int a = 0;
    volatile boolean flag = false;

    public void writer() {
        a = 1;                   //1
        flag = true;               //2
    }

    public void reader() {
        if (flag) {                //3
            int i =  a;           //4
            ……
        }
    }
}
假设线程A执行writer()方法之后,线程B执行reader()方法。根据happens before规则,这个过程建立的happens before 关系可以分为两类:

根据程序次序规则,1 happens before 2; 3 happens before 4。
根据volatile规则,2 happens before 3。
根据happens before 的传递性规则,1 happens before 4。
上述happens before 关系的图形化表现形式如下:



在上图中,每一个箭头链接的两个节点,代表了一个happens before 关系。黑色箭头表示程序顺序规则;橙色箭头表示volatile规则;蓝色箭头表示组合这些规则后提供的happens before保证。

这里A线程写一个volatile变量后,B线程读同一个volatile变量。A线程在写volatile变量之前所有可见的共享变量,在B线程读同一个volatile变量后,将立即变得对B线程可见。

volatile写-读的内存语义

volatile写的内存语义如下:

当写一个volatile变量时,JMM会把该线程对应的本地内存中的共享变量刷新到主内存。
以上面示例程序VolatileExample为例,假设线程A首先执行writer()方法,随后线程B执行reader()方法,初始时两个线程的本地内存中的flag和a都是初始状态。下图是线程A执行volatile写后,共享变量的状态示意图:



如上图所示,线程A在写flag变量后,本地内存A中被线程A更新过的两个共享变量的值被刷新到主内存中。此时,本地内存A和主内存中的共享变量的值是一致的。

volatile读的内存语义如下:

当读一个volatile变量时,JMM会把该线程对应的本地内存置为无效。线程接下来将从主内存中读取共享变量。
下面是线程B读同一个volatile变量后,共享变量的状态示意图:



如上图所示,在读flag变量后,本地内存B已经被置为无效。此时,线程B必须从主内存中读取共享变量。线程B的读取操作将导致本地内存B与主内存中的共享变量的值也变成一致的了。

如果我们把volatile写和volatile读这两个步骤综合起来看的话,在读线程B读一个volatile变量后,写线程A在写这个volatile变量之前所有可见的共享变量的值都将立即变得对读线程B可见。

下面对volatile写和volatile读的内存语义做个总结:

线程A写一个volatile变量,实质上是线程A向接下来将要读这个volatile变量的某个线程发出了(其对共享变量所在修改的)消息。
线程B读一个volatile变量,实质上是线程B接收了之前某个线程发出的(在写这个volatile变量之前对共享变量所做修改的)消息。
线程A写一个volatile变量,随后线程B读这个volatile变量,这个过程实质上是线程A通过主内存向线程B发送消息。
volatile内存语义的实现

下面,让我们来看看JMM如何实现volatile写/读的内存语义。

前文我们提到过重排序分为编译器重排序和处理器重排序。为了实现volatile内存语义,JMM会分别限制这两种类型的重排序类型。下面是JMM针对编译器制定的volatile重排序规则表:

是否能重排序 第二个操作
第一个操作 普通读/写 volatile读 volatile写
普通读/写 NO
volatile读 NO NO NO
volatile写 NO NO
举例来说,第三行最后一个单元格的意思是:在程序顺序中,当第一个操作为普通变量的读或写时,如果第二个操作为volatile写,则编译器不能重排序这两个操作。

从上表我们可以看出:

当第二个操作是volatile写时,不管第一个操作是什么,都不能重排序。这个规则确保volatile写之前的操作不会被编译器重排序到volatile写之后。
当第一个操作是volatile读时,不管第二个操作是什么,都不能重排序。这个规则确保volatile读之后的操作不会被编译器重排序到volatile读之前。
当第一个操作是volatile写,第二个操作是volatile读时,不能重排序。
为了实现volatile的内存语义,编译器在生成字节码时,会在指令序列中插入内存屏障来禁止特定类型的处理器重排序。对于编译器来说,发现一个最优布置来最小化插入屏障的总数几乎不可能,为此,JMM采取保守策略。下面是基于保守策略的JMM内存屏障插入策略:

在每个volatile写操作的前面插入一个StoreStore屏障。
在每个volatile写操作的后面插入一个StoreLoad屏障。
在每个volatile读操作的后面插入一个LoadLoad屏障。
在每个volatile读操作的后面插入一个LoadStore屏障。
上述内存屏障插入策略非常保守,但它可以保证在任意处理器平台,任意的程序中都能得到正确的volatile内存语义。

下面是保守策略下,volatile写插入内存屏障后生成的指令序列示意图:



上图中的StoreStore屏障可以保证在volatile写之前,其前面的所有普通写操作已经对任意处理器可见了。这是因为StoreStore屏障将保障上面所有的普通写在volatile写之前刷新到主内存。

这里比较有意思的是volatile写后面的StoreLoad屏障。这个屏障的作用是避免volatile写与后面可能有的volatile读/写操作重排序。因为编译器常常无法准确判断在一个volatile写的后面,是否需要插入一个StoreLoad屏障(比如,一个volatile写之后方法立即return)。为了保证能正确实现volatile的内存语义,JMM在这里采取了保守策略:在每个volatile写的后面或在每个volatile读的前面插入一个StoreLoad屏障。从整体执行效率的角度考虑,JMM选择了在每个volatile写的后面插入一个StoreLoad屏障。因为volatile写-读内存语义的常见使用模式是:一个写线程写volatile变量,多个读线程读同一个volatile变量。当读线程的数量大大超过写线程时,选择在volatile写之后插入StoreLoad屏障将带来可观的执行效率的提升。从这里我们可以看到JMM在实现上的一个特点:首先确保正确性,然后再去追求执行效率。

下面是在保守策略下,volatile读插入内存屏障后生成的指令序列示意图:



上图中的LoadLoad屏障用来禁止处理器把上面的volatile读与下面的普通读重排序。LoadStore屏障用来禁止处理器把上面的volatile读与下面的普通写重排序。

上述volatile写和volatile读的内存屏障插入策略非常保守。在实际执行时,只要不改变volatile写-读的内存语义,编译器可以根据具体情况省略不必要的屏障。下面我们通过具体的示例代码来说明:

class VolatileBarrierExample {
    int a;
    volatile int v1 = 1;
    volatile int v2 = 2;

    void readAndWrite() {
        int i = v1;           //第一个volatile读
        int j = v2;           // 第二个volatile读
        a = i + j;            //普通写
        v1 = i + 1;          // 第一个volatile写
        v2 = j * 2;          //第二个 volatile写
    }

    …                    //其他方法
}
针对readAndWrite()方法,编译器在生成字节码时可以做如下的优化:



注意,最后的StoreLoad屏障不能省略。因为第二个volatile写之后,方法立即return。此时编译器可能无法准确断定后面是否会有volatile读或写,为了安全起见,编译器常常会在这里插入一个StoreLoad屏障。

上面的优化是针对任意处理器平台,由于不同的处理器有不同“松紧度”的处理器内存模型,内存屏障的插入还可以根据具体的处理器内存模型继续优化。以x86处理器为例,上图中除最后的StoreLoad屏障外,其它的屏障都会被省略。

前面保守策略下的volatile读和写,在 x86处理器平台可以优化成:



前文提到过,x86处理器仅会对写-读操作做重排序。X86不会对读-读,读-写和写-写操作做重排序,因此在x86处理器中会省略掉这三种操作类型对应的内存屏障。在x86中,JMM仅需在volatile写后面插入一个StoreLoad屏障即可正确实现volatile写-读的内存语义。这意味着在x86处理器中,volatile写的开销比volatile读的开销会大很多(因为执行StoreLoad屏障开销会比较大)。

JSR-133为什么要增强volatile的内存语义

在JSR-133之前的旧Java内存模型中,虽然不允许volatile变量之间重排序,但旧的Java内存模型允许volatile变量与普通变量之间重排序。在旧的内存模型中,VolatileExample示例程序可能被重排序成下列时序来执行:



在旧的内存模型中,当1和2之间没有数据依赖关系时,1和2之间就可能被重排序(3和4类似)。其结果就是:读线程B执行4时,不一定能看到写线程A在执行1时对共享变量的修改。

因此在旧的内存模型中 ,volatile的写-读没有监视器的释放-获所具有的内存语义。为了提供一种比监视器锁更轻量级的线程之间通信的机制,JSR-133专家组决定增强volatile的内存语义:严格限制编译器和处理器对volatile变量与普通变量的重排序,确保volatile的写-读和监视器的释放-获取一样,具有相同的内存语义。从编译器重排序规则和处理器内存屏障插入策略来看,只要volatile变量与普通变量之间的重排序可能会破坏volatile的内存语意,这种重排序就会被编译器重排序规则和处理器内存屏障插入策略禁止。

由于volatile仅仅保证对单个volatile变量的读/写具有原子性,而监视器锁的互斥执行的特性可以确保对整个临界区代码的执行具有原子性。在功能上,监视器锁比volatile更强大;在可伸缩性和执行性能上,volatile更有优势。如果读者想在程序中用volatile代替监视器锁,请一定谨慎。
分享到:
评论

相关推荐

    深入理解JAVA内存模型(高清完整版)

    本教程《深入理解JAVA内存模型》将带你深入探讨这一主题,尤其关注Java中的同步原语——synchronized、volatile和final。 首先,我们要了解JMM的基础结构。JMM规定了程序中各个线程如何访问和修改共享变量,包括主...

    JAVA内存模型——同步操作规则1

    Java内存模型(JVM Memory Model,简称JMM)是Java平台中用于定义程序中各个变量(包括实例字段、静态字段和局部变量)的可见性和有序性的一种抽象概念。它为多线程环境下如何保证数据一致性提供了理论基础。下面将...

    Java内存模型知识汇总

    同时,为了保证多线程下的数据安全,Java内存模型引入了volatile关键字、synchronized关键字以及final关键字等同步机制来保证线程间的通信。 除此之外,JMM还定义了happens-before规则,这是一组用于保证线程间操作...

    java内存模型(有助理解多线程)

    ### Java内存模型(有助理解多线程) ...总结来说,深入理解Java内存模型对于编写高效的多线程程序非常重要。通过掌握JMM的基本原理,开发者不仅能够写出更健壮的代码,还能更好地应对并发环境下的挑战。

    Java——volatile关键字详解

    Java内存模型(JMM)对`volatile`变量定义了特殊的规则: - 当前线程在使用`volatile`变量前,必须从主内存中刷新最新值,确保其他线程的修改可见。 - 修改`volatile`变量后,必须立即同步回主内存,使得其他线程...

    Java并发编程:volatile关键字解析

    在深入了解`volatile`关键字之前,我们首先需要理解计算机内存模型的一些基本概念。在现代计算机系统中,CPU为了提高执行效率,会将频繁访问的数据从较慢的主存复制到更快的CPU缓存中。这种做法虽然提高了性能,但也...

    三问JMM--有关JVM内存模型的PPT

    近期,在诚信通开源研究小组的专题学习分享会上,我们针对Java内存模型(JMM)进行了深入探讨,现将JMM相关的一些核心概念进行梳理,以便更好地理解和把握JMM的基本原理。 #### 第一问:JMM是干什么的? JMM (Java ...

    聊聊并发(一)深入分析Volatile的实现原理

    首先,我们需要理解Java内存模型(JMM,Java Memory Model),它是Java语言规范定义的一种抽象概念,用于描述所有线程如何共享和访问内存。在JMM中,每个线程都有自己的工作内存,而主内存是所有线程共享的数据存储...

    Java并发编程之——Amino框架

    4. **并发原语封装**:框架可能封装了Java的并发原语,如synchronized、volatile、java.util.concurrent.atomic包中的原子类,提供了更简洁、更安全的API供开发者使用。 5. **并发编程模式**:Amino可能提供了对...

    java面试——深圳-腾讯-Java高级.zip

    其次,深入理解Java内存管理是至关重要的。了解堆和栈的区别,以及如何管理对象生命周期。JVM(Java虚拟机)的工作原理,包括类加载机制、垃圾收集(GC)以及内存模型(JMM),都是面试中常见的主题。理解垃圾收集器...

    Java线程内存模型的缺陷.docx

    为此,Java引入了一个核心概念——Java内存模型(Java Memory Model, JMM),其目的是规范线程和内存之间的交互规则。 ##### JMM的关键特性 1. **主内存**(Main Memory):所有的变量都存储在主内存中,并被所有...

    Java八股简历模板——3年.docx

    - **多线程并发**:深入理解Java多线程编程,包括线程生命周期、线程安全、线程间通信等,能灵活运用synchronized关键字、volatile变量、ReentrantLock等工具解决并发问题。 - **JVM原理**:熟悉JVM的工作原理,包括...

    14、深入理解并发可见性、有序性、原子性与JMM内存模型(1).pdf

    根据提供的文档信息,本文将详细解析并发编程中的关键概念——原子性、可见性及有序性,并结合Java内存模型(JMM)来深入理解这些概念。同时,我们也会通过具体示例来探讨这些问题在实际编程中的应用。 ### 一、并发...

    java葵花宝典——各种问题详细解答

    本资源“Java葵花宝典”旨在为初学者和经验丰富的开发者提供一系列关于Java的常见问题解答,以及深入理解Java各种核心概念的解析,帮助读者在Java学习之路上披荆斩棘,稳步前行。 1. **Java基础知识** - **Java...

    BAT 115个Java面试题和答案——终极(上)

    这份“BAT 115个Java面试题和答案——终极(上)”的资源提供了丰富的学习材料,旨在帮助Java开发者深入理解语言的核心概念、高级特性以及在实际开发中的应用。以下是一些关键知识点的概述: 1. **基础语法**:面试...

    java并发编程——内存模型

    并发——在操作系统中,是指一个时间段中有几个程序都处于已启动运行到运行完毕之间,且这几个程序都是在同一个处理机上运行,但任一个时刻点上只有一个程序在处理机上运行——源自百度百科在并发编程中,我们需要...

    java面试——上海-拼多多-Java高级.zip

    - 深入理解JVM内存模型,包括堆内存的分代、栈内存的帧结构、方法区的元空间等。 - 字符串常量池的位置和作用,以及String对象的创建和内存分配。 4. **设计模式**: - 介绍23种设计模式,比如单例模式、工厂...

    java面试——深圳-中国平安-Java中级.zip

    - **集合框架**:深入理解ArrayList、LinkedList、HashMap、HashSet等集合的实现原理和应用场景。 2. **JVM(Java虚拟机)**: - **内存模型**:了解堆、栈、方法区、本地方法栈、程序计数器的运作。 - **垃圾...

    java互联网架构技术点+中大型项目实战(一)(csdn)————程序.pdf

    2、深入Java内存模型(JMM) Java内存模型定义了线程如何访问和修改共享变量,以确保正确的行为。理解JMM有助于解决并发编程中的可见性、有序性和原子性问题。重点掌握volatile、final关键字的作用,了解happens-...

    java面试——上海-携程-Java高级.zip

    以上是Java高级面试中可能会涉及到的一些关键知识点,面试时需要深入理解和灵活应用这些知识来解答问题。对于携程这样的大型互联网公司,面试官还会关注面试者的实际项目经验,以及在压力下解决问题的能力。因此,...

Global site tag (gtag.js) - Google Analytics