public class Buffer extends OutputStream { private final byte[] scratch = new byte[1]; public synchronized void write(int v) throws IOException { scratch[0] = (byte)v; write(scratch, 0, 1); } /**Attempt to write a sequence of bytes to the collection buffer. This method will block if the spill thread is running and it cannot write. */ public synchronized void write(byte b[], int off, int len) throws IOException { boolean buffull = false; // 缓冲区连续写是否写满标志 boolean wrap = false; // 缓冲区非连续情况下有足够写空间标志 spillLock.lock(); try { do { // sufficient buffer space? 是否有足够的缓冲区 // 连续的空间, 在还没开始写入len个字节到kvbuffer时, 要判断如果写入len个字节后, 会不会使缓冲区满, 如果满需要spill // 1. bufstart=bufend<bufindex 正常写入缓冲区, 由于还没有开始spill, bufstart=bufend. 连续区间, 所以bufstart=bufend<bufindex // 2. bufstart < bufend < bufindex 正在溢写(bufstart<bufend=bufindex)的同时又有数据写入缓冲区(bufstart<bufend<bufindex) if (bufstart <= bufend && bufend <= bufindex) { // bufindex不会在bufend前面. 即bufindex不会写完缓冲区后,再绕到bufend前面 buffull = bufindex + len > bufvoid; // 一有数据写入kvbuffer,bufindex就后移. 判断再写入len个字节后,是否到达缓冲区尾部 wrap = (bufvoid - bufindex) + bufstart > len; // 缓冲区中非连续性区间包括两部分, buindex剩余的和bufstart之前的 } else { // 非连续的空间(中间部分为即将写入的数据): 基本条件为bufindex < bufstart. // bufindex <= bufstart <= bufend 写入缓冲区尾部后不够, 需要写到缓冲区头部bufindex<bufstart=bufend // bufend <= bufindex <= bufstart 溢写bufend=bufindex<bufstart,同时又有数据写入bufend<bufindex<bufstart wrap = false; // 非连续情况下总设置为false,一旦缓冲区即将满就必须溢写. 这样在复制到kvbuffer时,保证不会执行if(buffull)的逻辑 buffull = bufindex + len > bufstart; // bufindex现在已经重头开始了,再写入len,不能超过bufstart.如果超过则说明缓冲区写满了 } if (kvstart == kvend) { // spill thread not running 溢写线程还没运行. 只要kvstart!=kvend,才开始将缓冲区数据写入磁盘 if (kvend != kvindex) { // we have records we can spill 还没溢写时, 没有赋值kvend=kvindex. 数组kvoffsets中有记录 // bufindex>bufend, 连续的空间, 判断是否需要溢写. [bufend,bufindex)之间的为已经写入的数据,判断是否超过80%的限制 final boolean bufsoftlimit = (bufindex > bufend) ? bufindex - bufend > softBufferLimit // 非连续空间分成两段,bufvoid-bufend后面一段, bufindex为前面一段. 两者之和即为已写入的数据bufvoid-bufend+bufindex>limit : bufend - bufindex < bufvoid - softBufferLimit; if (bufsoftlimit || (buffull && !wrap)) { LOG.info("Spilling map output: buffer full= " + bufsoftlimit); startSpill(); // 缓冲区中已使用的内存利用率超过80%, 或者在写入之前缓冲区已经满了, 则立即spill } } else if (buffull && !wrap) { // kvoffsets数组中没有记录, 但是kvbuffer空间还是不够当前写入的数据 // We have no buffered records, and this record is too large to write into kvbuffer. We must spill it directly from collect final int size = ((bufend <= bufindex) ? bufindex - bufend : (bufvoid - bufend) + bufindex) + len; // 已使用+即将写入的len bufstart = bufend = bufindex = bufmark = 0; kvstart = kvend = kvindex = 0; bufvoid = kvbuffer.length; throw new MapBufferTooSmallException(size + " bytes"); } } if (buffull && !wrap) { // 如果空间不足同时spill在运行, 等待spillDone try { while (kvstart != kvend) { reporter.progress(); spillDone.await(); } } catch (InterruptedException e) {throw (IOException)new IOException("Buffer interrupted while waiting for the writer").initCause(e);} } } while (buffull && !wrap); } finally { spillLock.unlock(); } // here, we know that we have sufficient space to write 缓冲区有足够的空间用来写入数据 // 前面判断buffull有两种情况即连续性和非连续性. 非连续性一定不会执行下面的if语句. // 因为非连续性设置wrap=false,如果缓冲区满的话, 一定会执行spill溢写. // 否则如果非连续性执行下面的buffull逻辑. gaplen=bufvoid-bufindex就有问题. if (buffull) { final int gaplen = bufvoid - bufindex; // 写到缓冲区尾部 System.arraycopy(b, off, kvbuffer, bufindex, gaplen); len -= gaplen; // 剩余部分len=len-gaplen会写到缓冲区头部 off += gaplen; // 要写入数据的起始位置也要相应变化 bufindex = 0; // 从缓冲区头部开始写 } System.arraycopy(b, off, kvbuffer, bufindex, len); bufindex += len; // 写入len个字节, 缓冲区的bufindex就后移len个字节 } }
BlockBuffer.reset
protected synchronized void reset() throws IOException { // spillLock unnecessary; If spill wraps, then // bufindex < bufstart < bufend so contention is impossible // a stale value for bufstart does not affect correctness, since // we can only get false negatives that force the more conservative path // 写入key时,发生跨界现象. 即写入某个key时,缓冲区尾部剩余空间不足以容纳整个key值,因此需要将key值分开存储,其中一部分存到缓冲区末尾,->key上半部分① // 另一部分存到缓冲区头部->key下半部分②. 由于key是排序的关键字,需要保证连续性. 因此需要将跨界的key值重新存储到缓冲区的头部位置. // 发生跨界的key在缓冲区末尾的长度=bufvoid-bufmark. 其中bufmark为最后(上一次)写入的一个完整的key/value的结束位置 int headbytelen = bufvoid - bufmark; // 将尾部key插入到头部之后, bufvoid要设置为bufmark. 那么bufvoid开始,长度为headbytelen的就是key的尾部部分了 bufvoid = bufmark; // 缓冲区前半段有足够的空间容纳整个key值. 即将尾部的key插入到头部后, 不会使得这一个key超过bufstart if (bufindex + headbytelen < bufstart) { // bufindex为当前缓冲区的位置. 不管写入key或者value, bufindex都表示下一个可写的初始位置 // [0, bufindex]在调整之前的头部① -> [headbytelen, headbytelen+bufindex] 即将原先头部后移headbytelen用来准备第二次拷贝 System.arraycopy(kvbuffer, 0, kvbuffer, headbytelen, bufindex); // [bufvoid, bufvoid+headbytelen]调整之前的尾部② -> [0, headbytelen] 将尾部②插入到原先的头部① System.arraycopy(kvbuffer, bufvoid, kvbuffer, 0, headbytelen); bufindex += headbytelen; // bufindex也要跟随移动到原先头部的下一个位置 } else { // 缓冲区前半段没有足够的空间容纳整个key值. 在将key值移动到缓冲区开始位置时触发一次spill操作 byte[] keytmp = new byte[bufindex]; // bufindex为在未调整之前的缓冲区头部 System.arraycopy(kvbuffer, 0, keytmp, 0, bufindex); // 将原先的头部②复制到临时缓冲区中 bufindex = 0; // 重置缓冲区 out.write(kvbuffer, bufmark, headbytelen); // 首先将[bufmark, bufmark+headbytelen]即尾部①写入输出流 out.write(keytmp);// 然后将缓冲区头部,即key的下半部分也写入输出流 } }
相关推荐
hadoop-mapreduce-examples-2.7.1.jar
赠送jar包:hadoop-mapreduce-client-jobclient-2.6.5.jar; 赠送原API文档:hadoop-mapreduce-client-jobclient-2.6.5-javadoc.jar; 赠送源代码:hadoop-mapreduce-client-jobclient-2.6.5-sources.jar; 赠送...
hadoop中的demo,wordcount列子用到的JAR包 用法: # 在容器里运行WordCount程序,该程序需要2个参数...hadoop jar hadoop-mapreduce-examples-2.7.1-sources.jar org.apache.hadoop.examples.WordCount input output
hadoop-mapreduce-examples-2.6.5.jar 官方案例源码
hadoop-annotations-3.1.1.jar hadoop-common-3.1.1.jar hadoop-mapreduce-client-core-3.1.1.jar hadoop-yarn-api-3.1.1.jar hadoop-auth-3.1.1.jar hadoop-hdfs-3.1.1.jar hadoop-mapreduce-client-hs-3.1.1.jar ...
赠送jar包:hadoop-mapreduce-client-core-2.5.1.jar; 赠送原API文档:hadoop-mapreduce-client-core-2.5.1-javadoc.jar; 赠送源代码:hadoop-mapreduce-client-core-2.5.1-sources.jar; 赠送Maven依赖信息文件:...
赠送jar包:hadoop-mapreduce-client-app-2.6.5.jar; 赠送原API文档:hadoop-mapreduce-client-app-2.6.5-javadoc.jar; 赠送源代码:hadoop-mapreduce-client-app-2.6.5-sources.jar; 赠送Maven依赖信息文件:...
hadoop-mapreduce-examples-2.0.0-alpha.jar
赠送jar包:hadoop-mapreduce-client-jobclient-2.6.5.jar; 赠送原API文档:hadoop-mapreduce-client-jobclient-2.6.5-javadoc.jar; 赠送源代码:hadoop-mapreduce-client-jobclient-2.6.5-sources.jar; 赠送...
赠送jar包:hadoop-mapreduce-client-app-2.7.3.jar; 赠送原API文档:hadoop-mapreduce-client-app-2.7.3-javadoc.jar; 赠送源代码:hadoop-mapreduce-client-app-2.7.3-sources.jar; 赠送Maven依赖信息文件:...
赠送jar包:hadoop-mapreduce-client-core-2.7.3.jar; 赠送原API文档:hadoop-mapreduce-client-core-2.7.3-javadoc.jar; 赠送源代码:hadoop-mapreduce-client-core-2.7.3-sources.jar; 赠送Maven依赖信息文件:...
Hadoop 3.x(MapReduce)----【MapReduce 概述】---- 代码 Hadoop 3.x(MapReduce)----【MapReduce 概述】---- 代码 Hadoop 3.x(MapReduce)----【MapReduce 概述】---- 代码 Hadoop 3.x(MapReduce)----...
赠送jar包:hadoop-mapreduce-client-shuffle-2.5.1.jar; 赠送原API文档:hadoop-mapreduce-client-shuffle-2.5.1-javadoc.jar; 赠送源代码:hadoop-mapreduce-client-shuffle-2.5.1-sources.jar; 赠送Maven依赖...
赠送jar包:hadoop-mapreduce-client-shuffle-2.6.5.jar; 赠送原API文档:hadoop-mapreduce-client-shuffle-2.6.5-javadoc.jar; 赠送源代码:hadoop-mapreduce-client-shuffle-2.6.5-sources.jar; 赠送Maven依赖...
赠送jar包:hadoop-mapreduce-client-common-2.5.1.jar; 赠送原API文档:hadoop-mapreduce-client-common-2.5.1-javadoc.jar; 赠送源代码:hadoop-mapreduce-client-common-2.5.1-sources.jar; 赠送Maven依赖信息...
赠送jar包:hadoop-mapreduce-client-app-2.5.1.jar; 赠送原API文档:hadoop-mapreduce-client-app-2.5.1-javadoc.jar; 赠送源代码:hadoop-mapreduce-client-app-2.5.1-sources.jar; 赠送Maven依赖信息文件:...
hadoop-mapreduce-client-core-2.5.1.jar,mapreduce必备组件,供学习使用 欢迎下载
赠送jar包:hadoop-mapreduce-client-common-2.6.5.jar; 赠送原API文档:hadoop-mapreduce-client-common-2.6.5-javadoc.jar; 赠送源代码:hadoop-mapreduce-client-common-2.6.5-sources.jar; 赠送Maven依赖信息...
赠送jar包:hadoop-mapreduce-client-jobclient-2.5.1.jar; 赠送原API文档:hadoop-mapreduce-client-jobclient-2.5.1-javadoc.jar; 赠送源代码:hadoop-mapreduce-client-jobclient-2.5.1-sources.jar; 赠送...
java运行依赖jar包