dATa: 固定指前面0x00-0x7f的128个RAM,可以用acc直接读写的,速度最快,生成的代码也最小。
idATa: 固定指前面0x00-0xff的256个RAM,其中前128和dATa的128完全相同,只是因为访问的方式不同。idATa是用类似C中的指针方式 访问的。汇编中的语句为:mox ACC,@Rx.(不重要的补充:c中idATa做指针式的访问效果很好)
xdATa: 外部扩展RAM,一般指外部0x0000-0xffff空间,用DPTR访问。
pdATa: 外部扩展RAM的低256个字节,地址出现在A0-A7的上时读写,用movx ACC,@Rx读写。这个比较特殊,而且C51好象有对此BUG, 建议少用。但也有他的优点,具体用法属于中级问题,这里不提。
startup.a51的作用,和汇编一样,在C中定义的那些变量和数组的初始化就在startup.a51中进行,如果你在定义全局变量时带有数值,如unsigned char dATa xxx="100";,那startup.a51中就会有相关的赋值。如果没有=100,startup.a51就会把他清0。(startup.a51==变量的初始化)。 这些初始化完毕后,还会设置SP指针。对非变量区域,如堆栈区,将不会有赋值或清零动作。
有人喜欢改startup.a51,为了满足自己一些想当然的爱好,这是不必要的,有可能错误的。比如掉电保护的时候想保存一些变量, 但改startup.a51来实现是很笨的方法,实际只要利用非变量区域的特性,定义一个指针变量指向堆栈低部:0xff处就可实现。, 为什么还要去改? 可以这么说:任何时候都可以不需要改startup.a51,如果你明白它的特性。
bit
是在内部数据存储空间中 20H .. 2FH 区域中一个位的地址,这在DATA的20H以后以字节形式出现,可互相参照。另外加上8051 可寻址 的SFR,但刚刚试过,只是00H--7FH起作用,也就是说当数据有变化时颜色变红,以后的从80H到--FFH就不是位寻址区了,是位寻址的特殊寄存器,如涉及到了可位寻址的那11个当然会有反应。
复位后,程序计数器PC的内容为0000H,内部RAM各单元的值不确定。各功能寄存器的复位值如下:堆栈指针SP的复位值为07H,累加器ACC、寄存器B的复位值为00H,数据指针DPTR的复位值为0000H,而p0、p1、p2、p3四个口的复位值为0FFH。其他SFR如PSW、TCON、TMOD、TL0、TH0、TL1、TH1的复位值也为00H。
wave中是低128字节和高128字节(0-7FH),低128字节是片内RAM区,高128字节(80-FFH)是SFR(特殊功能寄存器)bit则是位于低128字节的20H .. 2FH 区域,即data的20H .. 2FH 区域
code
是在 0000H .. 0FFFFH 之间的一个代码地址。
我用
ORG 5000H
TAB: DB 22H,3BH,43H,66H,5H,6DH,88H后,
CODE从5000H开始以后变成DB各位
data
是在 0 到 127 之间的一个数据存储器地址,或者加 128 .. 255 范围内的一个特殊功能寄存器(SFR)地址。两者访问的方式不同。实际上由于PSW的复位设置PSW.3=RS0和PSW.4=RS1皆为0,所以通用工作寄存器区就是第0区,所以data的00--07H部分是与REG栏中的R0--R7对应的。以后的则仅代表低128字节的内部RAM。
idata
是 0 to 255 范围内的一个 idata 存储器地址。
idata与data重合低128字节,有的地方只有DATA表示256字节的片内RAM,
xdata 是 0 to 65535 范围内的一个 xdata 存储器地址。
指针类型和存储区的关系详解
一、存储类型与存储区关系
data ---> 可寻址片内ram
bdata ---> 可位寻址的片内ram
idata ---> 可寻址片内ram,允许访问全部内部ram
pdata ---> 分页寻址片外ram (MOVX @R0) (256 BYTE/页)
xdata ---> 可寻址片外ram (64k 地址范围FFFFH)
code ---> 程序存储区 (64k 地址范围),对应MOVC @DPTR
二、指针类型和存储区的关系
对变量进行声明时可以指定变量的存储类型如:
uchar data x和data uchar x相等价都是在内ram区分配一个字节的变量。
同样对于指针变量的声明,因涉及到指针变量本身的存储位置和指针所指向的存储区位置不同而进行相应的存储区类型关键字的
使用如:
uchar xdata * data pstr
是指在内ram区分配一个指针变量("*"号后的data关键字的作用),而且这个指针本身指向xdata区("*"前xdata关键字的作用),
可能初学C51时有点不好懂也不好记。没关系,我们马上就可以看到对应“*”前后不同的关键字的使用在编译时出现什么情况。
......
uchar xdata tmp[10]; //在外ram区开辟10个字节的内存空间,地址是外ram的0x0000-0x0009
......
第1种情况:
uchar data * data pstr;
pstr="tmp";
首先要提醒大家这样的代码是有bug的, 他不能通过这种方式正确的访问到tmp空间。 为什么?我们把编译后看到下面的汇编
代码:
MOV 0x08,#tmp(0x00) ;0x08是指针pstr的存储地址
看到了吗!本来访问外ram需要2 byte来寻址64k空间,但因为使用data关键字(在"*"号前的那个),所以按KeilC编译环境来说
就把他编译成指向内ram的指针变量了,这也是初学C51的朋友们不理解各个存储类型的关键字定义而造成的bug。特别是当工程中的
默认的存储区类为large时,又把tmp[10] 声明为uchar tmp[10] 时,这样的bug是很隐秘的不容易被发现。
第2种情况:
uchar xdata * data pstr;
pstr = tmp;
这种情况是没问题的,这样的使用方法是指在内ram分配一个指针变量("*"号后的data关键字的作用),而且这个指针本身指向
xdata区("*"前xdata关键字的作用)。编译后的汇编代码如下。
MOV 0x08,#tmp(0x00) ;0x08和0x09是在内ram区分配的pstr指针变量地址空间
MOV 0x09,#tmp(0x00)
这种情况应该是在这里所有介绍各种情况中效率最高的访问外ram的方法了,请大家记住他。
第3种情况:
uchar xdata * xdata pstr;
pstr="tmp";
这中情况也是对的,但效率不如第2种情况。编译后的汇编代码如下。
MOV DPTR, #0x000A ;0x000A,0x000B是在外ram区分配的pstr指针变量地址空间
MOV A, #tmp(0x00)
MOV @DPTR, A
INC DPTR
MOV A, #tmp(0x00)
MOVX @DPTR, A
这种方式一般用在内ram资源相对紧张而且对效率要求不高的项目中。
第4种情况:
uchar data * xdata pstr;
pstr="tmp";
如果详细看了第1种情况的读者发现这种写法和第1种很相似,是的,同第1 种情况一样这样也是有bug的,但是这次是把pstr分
配到了外ram区了。编译后的汇编代码如下。
MOV DPTR, #0x000A ;0x000A是在外ram区分配的pstr指针变量的地址空间
MOV A, #tmp(0x00)
MOVX @DPTR, A
第5种情况:
uchar * data pstr;
pstr="tmp";
大家注意到"*"前的关键字声明没有了,是的这样会发生什么事呢?下面这么写呢!对了用齐豫的一首老歌名来说就是 “请跟我
来”,请跟我来看看编译后的汇编代码,有人问这不是在讲C51吗? 为什么还要给我们看汇编代码。C51要想用好就要尽可能提升C51
编译后的效率,看看编译后的汇编会帮助大家尽快成为生产高效C51代码的高手的。还是看代码吧!
MOV 0x08, #0X01 ;0x08-0x0A是在内ram区分配的pstr指针变量的地址空间
MOV 0x09, #tmp(0x00)
MOV 0x0A, #tmp(0x00)
注意:这是新介绍给大家的,大家会疑问为什么在前面的几种情况的pstr指针变量都用2 byte空间而到这里就用3 byte空间了
呢?这是KeilC的一个系统内部处理,在KeilC中一个指针变量最多占用 3 byte空间,对于没有声明指针指向存储空间类型的指针,
系统编译代码时都强制加载一个字节的指针类型分辩值。具体的对应关系可以参考KeilC的help中C51 User's Guide。
第6种情况:
uchar * pstr;
pstr="tmp";
这是最直接最简单的指针变量声明,但他的效率也最低。还是那句话,大家一起说好吗!编译后的汇编代码如下。
MOV DPTR, #0x000A ;0x000A-0x000C是在外ram区分配的pstr指针变量地址空间
MOV A, #0x01
MOV @DPTR, A
INC DPTR
MOV DPTR, #0x000A
MOV A, #tmp(0x00)
MOV @DPTR, A
INC DPTR
MOV A, #tmp(0x00)
MOVX @DPTR, A
这种情况很类似第5种和第3种情况的组合,既把pstr分配在外ram空间了又增加了指针类型的分辨值。
相关推荐
C51单片机中data、idata、xdata、pdata的区别 C51单片机中有四种类型的存储器:data、idata、xdata、pdata,它们之间的区别主要体现在它们的存储空间、访问方式和使用场景上。 一、data data是指C51单片机中的...
51系列中data_idata_xdata_pdata的区别,
在单片机编程中,关键字data、idata、xdata和pdata是用于定义变量存储位置的关键字。它们代表了不同类型的内存空间,并且在使用上具有各自的特性。掌握这些关键字的区别对于编写高效、稳定的单片机程序是非常重要的...
keilC51中data,idata,xdata,pdata的区别 keilC51中data,idata,xdata,pdata的区别 keilC51中data,idata,xdata,pdata的区别
"C51 中 data, idata, xdata, pdata 的区别" C51 中的数据类型可以分为四种:data, idata, xdata, pdata。每种类型都有其特定的存储空间和访问方式。 data 类型:data 类型是指固定指前 0x00-0x7f 的 128 个 RAM,...
在深入探讨单片机中不同存储区域的区别之前,我们首先要明白单片机的基本原理。单片机,又称为微控制器,是集成了CPU、内存、输入/输出接口等部件的微型计算机系统。它广泛应用于嵌入式系统中,用于实现特定的控制...
在51系列单片机中,不同的存储类型如data、idata、xdata、pdata以及code,它们分别对应着不同的存储区域,拥有各自独特的特性和访问方式。了解这些存储类型的区别对于编写高效、优化的嵌入式系统代码至关重要。 ###...
总结来说,对于8051系列单片机而言,code、data、xdata、idata和pdata这五个存储类型各有其特点和适用场景。data区和idata区用于片内快速访问和存储变量,xdata区用于片外扩展存储空间,而code区用于存放程序代码。...
在51系列单片机中,内存被划分为不同的存储区,这些存储区有不同的特性和用途,主要包括data、idata、xdata和pdata。下面将详细解释这些存储区的特性。 1. **data**: data存储区是固定在0x00到0x7F的128个字节的...
在51系列单片机中,C51编程语言提供了四种不同的存储类型,分别是data、idata、xdata和pdata,这些存储类型对应于单片机的不同内存区域,并且具有各自的访问特性和效率差异。 1. **data**: - data存储类型主要...
通过对51单片机中`data`、`bit`、`idata`、`xdata`和`pdata`等存储类型的详细介绍,我们可以更好地理解它们之间的区别以及如何在实际项目中合理选择和使用这些存储类型。正确地使用这些存储类型能够帮助我们提高程序...
在探讨51单片机中idata、xdata与data的区别之前,我们首先应当明确这三种类型数据存储区域在51单片机系统架构中的位置及其各自的特点,这对于编写高效、可靠的程序至关重要。 ### data `data`关键字所指定的存储...
### IT知识点解析:51单片机中的idata, xdata, pdata, data详解 #### 1. data - **定义**:`data` 指的是51单片机内部RAM的前128个字节(地址范围:0x00-0x7F)。 - **特点**: - 可以通过累加器(ACC)直接读写,...
在变量声明时,可以指定变量的存储类型,例如uchar data x 和 data uchar x 都是在内 RAM 区分配一个字节的变量。对于指针变量的声明,需要考虑指针变量本身的存储位置和指针所指向的存储区位置,使用不同的存储类型...
单片机中关键字data,idata,xdata,pdata的区别 单片机中关键字data,idata,xdata,pdata是单片机编程中经常使用的四个关键字,它们之间的区别是非常重要的。在这篇文章中,我们将详细介绍这四个关键字的定义、使用方法...
本文将详细解释单片机中几个特定的关键字:`data`, `idata`, `xdata`, `pdata`,以及它们在程序中的作用。 1. **data**: 这个关键字用于声明存储在片内RAM中的变量,地址范围通常是从0x00到0x7F,共计128个字节。...
8051微控制器具有多种存储区域,包括data, bdata, idata, pdata, xdata和code,每种都有其特定的用途和寻址方式。 1. **data**:此存储类别用于在内部RAM的可寻址区域(0到127)分配变量。也可以用于SFR(特殊功能...