`

Oracle 11g Enhancements in AWR Baselines(原创)

 
阅读更多

Enhancements in AWR Baselines

A baseline is any set of snapshots taken over a period of time. The snapshots are selected such that they yield a set of baselines that change during the period of time that you’re collecting data. The baseline captures the time-based variations for a set of baseline statistics and alerts you when the current values differ significantly from the baseline values. An AWR baseline contains a set of AWR snapshots collected over a period of time that provides a frame of reference for a known “good period,” which you can then use as a reference period to compare performance during another time period of interest. The snapshots in an AWR baseline are grouped to provide a set of baseline values that change over time. For example, the I/O rate is highest during the peak usage times in the database. One of the most difficult problems you have in setting alert thresholds is setting those thresholds to the correct levels for appropriate alerts. Arbitrary alerts that remain identical throughout are not optimal because they will likely miss the natural peaks and valleys in the workload of a real production database. Baselines, on the other hand, are ideal for setting time- dependent alert thresholds because the baselines let the database compare apples with apples and oranges with oranges, by enabling the comparison of present performance with baseline data from a similar time period.

Oracle Database 11g enables you to collect two types of baselines: static baselines and moving window baselines. A static baseline can be a single baseline collected over a single fixed time period (for example, from Jan 1, 2008 at 10:00 A.M. to Jan 1, 2008 at 12:00 P.M.) or a repeating baseline collected over a repeating time period (for example, every first Monday in a month from 10:00 A.M. to 12:00 P.M. for the year 2008). The moving window baseline captures data over a window that keeps moving over time. Oracle Database 11g creates a system-defined moving window baseline by default. This default moving window corresponds to the AWR data captured during the AWR retention period, which is now eight days, rather than seven days, as it was in the Oracle Database 10g release.

Baselines help you set alert thresholds, monitor performance, and compare advisor reports. This is a definite improvement over the Oracle Database 10g release, where all you can really do with an AWR baseline is to just create and drop static single baselines. Oracle Database 11g provides several enhancements to the AWR baselines feature, including the following:

  • Baseline templates to schedule the creation of a baseline
  • Moving window baselines from which you can specify adaptive thresholds
  • AWR Baseline Metric Thresholds

Single AWR Baseline

The fixed, or static, baseline functionality is a little more flexible in Oracle 11g compared to that of Oracle 10g. Originally, the DBMS_WORKLOAD_REPOSITORY package included a single CREATE_BASELINE procedure allowing you to define baselines using specific snapshot IDs. It now includes overloaded procedures and functions allowing baselines to be created using start and end times, which are used to estimate the relevant snapshot IDs. The functions have the same parameter lists as the procedures, but return the baseline ID. By default baselines are kept forever, but the new expiration parameter allows them to be automatically expired after a specified number of days.
SET SERVEROUTPUT ON
DECLARE
  l_return  NUMBER;
BEGIN
  -- Using procedures.
  DBMS_WORKLOAD_REPOSITORY.create_baseline(
    start_snap_id => 2490,
    end_snap_id   => 2491,
    baseline_name => 'test1_bl',
    expiration    => 60);
  DBMS_WORKLOAD_REPOSITORY.create_baseline(
    start_time    => TO_DATE('09-JUL-2008 17:00', 'DD-MON-YYYY HH24:MI'),
    end_time      => TO_DATE('09-JUL-2008 18:00', 'DD-MON-YYYY HH24:MI'),
    baseline_name => 'test2_bl',
    expiration    => NULL);
  -- Using functions.
  l_return := DBMS_WORKLOAD_REPOSITORY.create_baseline(
                start_snap_id => 2492,
                end_snap_id   => 2493,
                baseline_name => 'test3_bl',
                expiration    => 30);
  DBMS_OUTPUT.put_line('Return: ' || l_return);
  l_return := DBMS_WORKLOAD_REPOSITORY.create_baseline(
                start_time    => TO_DATE('09-JUL-2008 19:00', 'DD-MON-YYYY HH24:MI'),
                end_time      => TO_DATE('09-JUL-2008 20:00', 'DD-MON-YYYY HH24:MI'),
                baseline_name => 'test4_bl',
                expiration    => NULL);
  DBMS_OUTPUT.put_line('Return: ' || l_return);
END;
/
Return: 8
Return: 9
PL/SQL procedure successfully completed.
The new baselines are visible in DBA_HIST_BASELINE view.
COLUMN baseline_name FORMAT A15
SELECT baseline_id, baseline_name, START_SNAP_ID,
       TO_CHAR(start_snap_time, 'DD-MON-YYYY HH24:MI') AS start_snap_time,      
       END_SNAP_ID,           
       TO_CHAR(end_snap_time, 'DD-MON-YYYY HH24:MI') AS end_snap_time
FROM   dba_hist_baseline
WHERE  baseline_type = 'STATIC'
ORDER BY baseline_id;
BASELINE_ID BASELINE_NAME   START_SNAP_ID START_SNAP_TIME   END_SNAP_ID END_SNAP_TIME
----------- --------------- ------------- ----------------- ----------- -----------------
          6 test1_bl                 2490 09-JUL-2008 17:00        2491 09-JUL-2008 18:00
          7 test2_bl                 2490 09-JUL-2008 17:00        2491 09-JUL-2008 18:00
          8 test3_bl                 2492 09-JUL-2008 19:00        2493 09-JUL-2008 20:00
          9 test4_bl                 2492 09-JUL-2008 19:00        2493 09-JUL-2008 20:00
4 rows selected.

The DBA_HIST_BASELINE_DETAILS view shows details about all AWR baselines.
SQL> desc dba_hist_baseline_details
 Name                           Null?     Type
------------------------------ --------   --------------
 DBID                                     NUMBER
 INSTANCE_NUMBER                          NUMBER
 BASELINE_ID                              NUMBER
 BASELINE_NAME                            VARCHAR2(64)
 BASELINE_TYPE                            VARCHAR2(13)
 START_SNAP_ID                            NUMBER
 START_SNAP_TIME                          TIMESTAMP(3)
 END_SNAP_ID                              NUMBER
 END_SNAP_TIME                            TIMESTAMP(3)
 SHUTDOWN                                 VARCHAR2(3)
 ERROR_COUNT                              NUMBER
 PCT_TOTAL_TIME                           NUMBER
 LAST_TIME_COMPUTED                       DATE
 MOVING_WINDOW_SIZE                       NUMBER
 CREATION_TIME                            DATE
 EXPIRATION                               NUMBER
 TEMPLATE_NAME                            VARCHAR2(64)

  • SHUTDOWN: Indicates whether the database was shut down during this time period. The possible values are YES, NO, and NULL.
  • PCT_TOTAL_TIME: The amount of time spanned by the snapshots divided by the total possible time for the baseline.
  • ERROR_COUNT: Number of errors in the snapshots in the baseline snapshot range.
  • BASELINE_TYPE: The possible values are STATIC, MOVING_WINDOW, and GENERATED. Static windows are other ones that you manually created. The start and end snapshot IDs are dynamic for a moving window baseline. The generated baselines are the ones automatically created by the database based on a template. 
  • MOVING_WINDOW_SIZE: The value of this attribute depends on the value of the BASELINE_TYPE attribute. If BASELINE_TYPE is NULL, the moving window size is the same as the value of the AWR retention period. If the BASELINE_TYPE is MOVING_WINDOW, then the value of the MOVING_WINDOW_SIZE attribute is the same number of days as the moving window.

Information about a specific baseline can be displayed by using the BASELINE_ID with the SELECT_BASELINE_DETAILS pipelined table function
SELECT *
FROM   TABLE(DBMS_WORKLOAD_REPOSITORY.select_baseline_details(6));
Baselines are renamed using the RENAME_BASELINE procedure.
BEGIN
  DBMS_WORKLOAD_REPOSITORY.rename_baseline(
    old_baseline_name => 'test4_bl',
    new_baseline_name => 'test5_bl');
END;
/
Baselines are dropped using the DROP_BASELINE procedure.
BEGIN
  DBMS_WORKLOAD_REPOSITORY.drop_baseline(baseline_name => 'test1_bl');
  DBMS_WORKLOAD_REPOSITORY.drop_baseline(baseline_name => 'test2_bl');
  DBMS_WORKLOAD_REPOSITORY.drop_baseline(baseline_name => 'test3_bl');
  DBMS_WORKLOAD_REPOSITORY.drop_baseline(baseline_name => 'test5_bl');
END;
/

Baseline Templates

The time period spanned by a baseline template can lie in the future or it can encompass a past timeline. No matter which timeframe you choose, the manageability infrastructure automatically generates a task and creates a baseline right away. Each night, the MMON (Memory Monitor background process) task checks to see whether the end time has passed for any baseline templates you created. If it discovers that a template for baseline generation contains a completed time range, it will create the baseline for the period specified by the baseline template. Besides it will delete the expired Baseline Templates,the information refer to the DBA_HIST_BASELINE_TEMPLATE view.You can create two types of baseline templates—a single  baseline template or a repeating baseline template.

You can schedule the creation of an AWR baseline for a contiguous future time period such as a known heavy usage period. Using the single AWR baseline template, you can then automatically capture a baseline of the performance during the period you specify. The following example shows how to create a single baseline template using the CREATE_BASELINE_TEMPLATE procedure:
BEGIN
  DBMS_WORKLOAD_REPOSITORY.create_baseline_template(
    start_time    => TO_DATE('01-DEC-2008 00:00', 'DD-MON-YYYY HH24:MI'),
    end_time      => TO_DATE('01-DEC-2008 05:00', 'DD-MON-YYYY HH24:MI'),
    baseline_name => '01_dec_008_00_05_bl',
    template_name => '01_dec_008_00_05_tp',
    expiration    => 100);
END;
/

The optional expiration parameter specifies that this baseline will expire in 100 days. The value you set for the expiration parameter specifies the length of time for which the database will maintain a baseline. If you don’t specify an expiration time period (NULL), the baseline will never expire. The baseline_name and template_name parameters are self-explanatory. The start_ time and end_time parameters specify the beginning and ending snapshot time periods. You can also specify a DBID parameter, but its value defaults to NULL if you omit it, as in this case.

You can create a repeating baseline template to schedule the creation of an AWR baseline for a known period such as around 3:00 P.M. every Friday evening for an entire year. The database will automatically create a new baseline every Friday and you can have the database also automatically remove older baselines after a specified expiration time. Here’s how you create a repeating baseline template using the CREATE_BASELINE_TEMPLATE procedure again:

BEGIN
  DBMS_WORKLOAD_REPOSITORY.create_baseline_template(
   day_of_week          => 'MONDAY',
   hour_in_day          => 0,
   duration             => 5,
   start_time           => SYSDATE,
   end_time             => ADD_MONTHS(SYSDATE, 6),
   baseline_name_prefix => 'monday_morning_bl_',
   template_name        => 'monday_morning_tp',
   expiration           => NULL,

   DBID    => 12345);
END;
/

The following is a brief explanation of the values of the various parameters in the CREATE_BASELINE_TEMPLATE procedure:

  • DAY_OF_THE_WEEK: Specifies the day of the week the baseline will repeat and can be any of the seven days in a week.
  • HOUR_IN_DAY: Allows you to specify a value between 0 and 23 to determine when the baseline will start.
  • DURATION: The number of hours for which the baseline should last.
  • START_TIME: Time to start generating the baseline, determined by converting to the nearest snapshot ID.
  • END_TIME: Time to stop generating the baseline, determined by converting to the nearest snapshot ID.
  • BASELINE_NAME_PREFIX: Specifies the baseline prefix, which will be appended to the date information.
  • TEMPLATE_NAME: Specifies the name of the repeating baseline template.
  • EXPIRATION: The number of days for which the database will maintain the baseline. Default value is NULL, meaning the database will always maintain the baseline and never drop it.
  • DBID: The database identifier. Defaults to NULL.

Information about baseline templates is displayed using the DBA_HIST_BASELINE_TEMPLATE view.
SELECT template_name,
       template_type,
       baseline_name_prefix,
       start_time,
       end_time,
       day_of_week,
       hour_in_day,
       duration,
       expiration
FROM   dba_hist_baseline_template;
TEMPLATE_NAME                  TEMPLATE_ BASELINE_NAME_PREFIX           START_TIME
------------------------------ --------- ------------------------------ --------------------
END_TIME             DAY_OF_WE HOUR_IN_DAY   DURATION EXPIRATION
-------------------- --------- ----------- ---------- ----------
01_dec_008_00_05_tp            SINGLE    01_dec_008_00_05_bl            01-DEC-2008 00:00:00
01-DEC-2008 05:00:00                                         100
monday_morning_tp              REPEATING monday_morning_bl_             11-JUL-2008 14:43:36
11-JAN-2009 14:43:36 MONDAY              0          5
2 rows selected.
Notice the BASELINE_NAME_PREFIX column holds either the prefix or full baseline name depending on the type of baseline being captured.
Baseline templates are dropped using the DROP_BASELINE_TEMPLATE procedure.
BEGIN
  DBMS_WORKLOAD_REPOSITORY.drop_baseline_template (template_name => '01_dec_008_00_05_tp');
  DBMS_WORKLOAD_REPOSITORY.drop_baseline_template (template_name => 'monday_morning_tp');
END;
/

Moving Window AWR Baselines

Oracle Database 11g offers you a choice between a static baseline and a moving window baseline. It also allows you to create both a single static baseline and a repeating static baseline. You can create a moving window AWR baseline instead of a mere fixed baseline corresponding to a fixed, contiguous past period in time. Oracle creates and maintains a system-defined moving window baseline by default. A moving window baseline encompasses AWR data during the AWR retention period, which is, by default, eight days. (In Oracle Database 11g, the default retention period has been increased to eight days from the previous retention period of seven days.) This default moving window baseline is called the system_moving_window.

Oracle schedules the statistics collection for this window every Sunday at midnight. The setting for days is always null for this baseline, thereby making the window size exactly match the duration of the AWR retention setting. Enterprise Manager uses the system-defined baseline as the default to compare performance with the current database performance.

Moving window baselines are especially useful when you’re using adaptive thresholds because you can then utilize the data from the entire AWR retention period to compute the values for the metric thresholds you’ve selected. By default, the adaptive thresholds feature uses statistics on the default moving window baseline (SYSTEM_MOVING_WINDOW baseline). However, Oracle advises you to use a larger moving window such as 30 days rather than the default AWR retention period of 8 days, if you’re considering using adaptive thresholds. Because a moving window baseline depends on the AWR data, it can range over the length of the AWR retention period or a shorter time span. If you want to increase the size of the moving window, make sure that you first increase the size of the AWR retention period. Use the MODIFY_BASELINE_WINDOW_SIZE procedure to resize the default moving window baseline size of 8 days. Here’s an example that sets the moving window baseline size to 20 days:

The current AWR retention period can be displayed by querying the RETENTION column of the DBA_HIST_WR_CONTROL view.
SQL> SELECT retention FROM dba_hist_wr_control;
RETENTION
---------------------------------------------------------------------------
+00008 00:00:00.0
1 row selected.
The retention period is altered using the MODIFY_SNAPSHOT_SETTINGS procedure, which accepts a RETENTION parameter in minutes.
BEGIN
DBMS_WORKLOAD_REPOSITORY.modify_snapshot_settings(
retention => 43200);  -- Minutes (= 30 Days).
END;
/
SQL> SELECT retention FROM dba_hist_wr_control;
RETENTION
---------------------------------------------------------------------------
+00030 00:00:00.0
1 row selected.
The current moving window size is displayed by querying the DBA_HIST_BASELINE view.
SQL> SELECT moving_window_size
FROM   dba_hist_baseline
WHERE  baseline_type = 'MOVING_WINDOW';
MOVING_WINDOW_SIZE
------------------
8
1 row selected.
The size of the moving window baseline is altered using the MODIFY_BASELINE_WINDOW_SIZE procedure, which accepts a WINDOW_SIZE parameter in days.
BEGIN
DBMS_WORKLOAD_REPOSITORY.modify_baseline_window_size(
window_size => 20);
END;
/
SQL> SELECT moving_window_size
FROM   dba_hist_baseline
WHERE  baseline_type = 'MOVING_WINDOW';
MOVING_WINDOW_SIZE
------------------
20
1 row selected.

Setting AWR Baseline Metric Thresholds

Sometimes, you want to examine the metric threshold settings for the time period spanned by a baseline. Using the AWR data contained in the baseline, you can compute the metric threshold values. Use the SELECT_BASELINE_METRICS function to display the metric value statistics during the period covered by a baseline SELECT * FROM TABLE(DBMS_WORKLOAD_REPOSITORY.select_baseline_metric('peak_baseline'));

The previous code will display the metric thresholds for the baseline named peak_baseline.

Oracle Database 11g provides a built-in alert infrastructure that warns you about potential problems in the database. The default alerts include alerts pertaining to tablespace usage, recovery area space problem, suspended resumable sessions, and the “snapshot too old” error. However, you can also specify a custom performance alert based on performance-related metric thresholds. For example, a blocked_user threshold issues an alert when the number of users blocked by any one session exceeds the metric threshold you set.

Performance alert thresholds can be difficult to determine because the expected metric values do vary by the type and amount of the workload.Using baselines, you can capture metric value statistics. If the baseline is static, you can manually compute the metric value statistics over the baseline. If you’re using a system moving window, the database can automatically compute the metric value statistics over the moving window. You can then use the baseline metric statistics to define the alert thresholds specific to the baseline.

Baselines capture metric values, which the database will then compare against current performance metrics to judge how current performance measures up against performance during a known good period. If there’s a serious discrepancy—that is, if the expected values are very different from the actual present statistics—the database will issue a performance alert. Whether you use a manually computed static baseline or a baseline automatically computed over the system moving window, the baseline values are compared to present statistics to see if an alert is justified. Adaptive thresholds are so named because the thresholds aren’t fixed, but vary according to the conditions in the database—they adapt to the type and amount of the workload. 

The database computes statistics from the system moving window according to the BSLN_MAINTAIN_STATS_SCHED schedule. 

The metric statistics that you capture over a baseline enable you to set thresholds for comparing baseline statistics to current activity. You can use three different threshold types, as explained here:

  • Significance level  Thresholds based on significance level use statistical significance to determine whether the current levels observed are unusual compared to baseline values, thus meriting an alert. For example, if you set the significance level to 0.99 for a metric, the alert threshold will be setwhere 1 percent of the observed metric values are outside the value set for the metric. The database will thus issue an alert when 1 percent of the metric values are different from the expected metric value. Note that the higher the significance level, the fewer the number of alerts that will be issued by the database. For example, a significance level of 0.9999 would cause fewer alerts to be raised than a significance level of 0.99. 
  • Percentage of maximum  An alert is generated if the observed metric is at or above a percentage of the maximum that you specified. For example, if you specify 120 as the percentage of maximum where the maximum value captured by the baseline is 1000, the database will issue an alert when the observed metric crosses 1200, which is 120 percent of the maximum (1000).
  • Fixed values  Fixed values are standard Enterprise Manager fixed thresholds,which the database compares with the actual metrics. The DBA sets the fixed values, without the need for any AWR baselines.

Oracle Database 11g fully integrates the selection of adaptive thresholds for performance metrics with the AWR baselines, with the baselines serving as the source of the metrics. The database determines the alert thresholds by examining the metric statistics captured over the baseline time period. Thus, the database sets the thresholds based on data provided by the database itself, and you don’t have to know any system-specific metrics. The database sets the thresholds based on system data itself and some metadata provided by you. Using the Enterprise Manager, you can choose a starter set of thresholds based on either the OLTP or the Data Warehouse workload profile.

Once you select the appropriate workload profile, the database will automatically configure and maintain the adaptive thresholds based on the default SYSTEM_MOVING_WINDOW baseline. The adaptive thresholds will cover all metrics suitable for the chosen workload profile. Once you configure the adaptive thresholds, you can edit the thresholds levels. When you’re editing the threshold levels, Oracle recommends that you set the initial significance level thresholds conservatively in the beginning because a very high significance level will keep the number of alerts low.

 

参考至:《McGraw.Hill.OCP.Oracle.Database.11g.New.Features.for.Administrators.Exam.Guide.Apr.2008》

                http://www.oracle-base.com/articles/11g/awr-baseline-enhancements-11gr1.php

本文原创,转载请注明出处、作者

如有错误,欢迎指正

邮箱:czmcj@163.com

0
3
分享到:
评论

相关推荐

    oracle11g性能诊断

    Oracle 11g引入了AWR,这是一个自动收集性能数据并存储在数据库中的功能。AWR提供了对数据库性能的快照,通过比较两个时间点的数据,可以分析出性能变化的原因。它收集的信息包括SQL语句、缓冲区命中率、等待事件等...

    Oracle11g数据库

    Oracle11g数据库是Oracle公司推出的数据库管理系统的一个重要版本,发布于2007年,主要服务于企业级数据存储、管理和分析。Oracle数据库系统以其稳定性、高性能和安全性在全球范围内广泛应用于金融、电信、政府和...

    ORACLE11g研究新特性

    AWR在Oracle 11g中提供了更详尽的性能报告和诊断信息,自调优功能也更加强大,帮助DBA自动优化数据库性能。 9. **Total Recall** Total Recall功能提供了对历史数据的即时访问,即使数据已经被删除或更新,也能...

    Oracle11goci.dll.zip

    当Navicat for Oracle无法连接到Oracle11g数据库时,通常是因为oci.dll文件版本不匹配或者缺失。这个问题可以通过替换正确的oci.dll文件来解决。 oci.dll是Oracle Call Interface的动态链接库,它是Oracle数据库与...

    浙大oracle11g教程

    【Oracle 11g 教程概述】 Oracle 11g是Oracle公司推出的数据库管理系统的一个重要版本,它在10g的基础上进行了许多功能的增强和优化,提供了更高效、更安全的数据存储和管理解决方案。本教程由浙江大学联合Oracle...

    oracle11g数据库正版资源

    Oracle 11g数据库是Oracle公司推出的一款关系型数据库管理系统,是企业级数据管理的重要工具。这个版本在11g R1(11.1.0.x.x)的基础上进行了优化和增强,推出了11g R2(11.2.0.x.x),以提供更高效的数据处理能力、...

    Oracle11g_

    12. **PL/SQL Enhancements**: PL/SQL是Oracle的编程语言,Oracle11g对它进行了增强,包括新的函数、异常处理改进和调试工具,使开发更加高效。 综上所述,Oracle11g在数据库管理、高可用性、性能优化和数据保护...

    Oracle 11g 数据库 .New.Features.for.ide.Exam

    4. **Automatic Workload Repository (AWR)**:AWR是Oracle 11g中的性能监控工具,它可以自动收集数据库性能数据并生成报告,帮助DBA识别性能瓶颈。 5. **Automatic Memory Management (AMM)**:Oracle 11g引入了...

    Oracle11g_60921 (1).rar

    Oracle 11g是一款由甲骨文公司推出的数据库管理系统,它是Oracle数据库的第11个主要版本,提供了广泛的功能和优化,适用于各种规模的企业和开发人员。标题中的"Oracle11g_60921 (1).rar"表明这是一个包含Oracle 11g...

    New features in Performance Management of Oracle 11g

    Oracle 11g在性能管理方面引入了一系列新特性,这些改进显著提升了数据库的性能和管理员的工作效率。本文将深入探讨其中的关键功能。 1. 结果缓存功能 (Result Caching Functionality) 1.1 概述 结果缓存是...

    Oracle Database 11g The Complete Reference

    1. **Oracle 11g新特性**:介绍11g引入的新功能,如Automatic Memory Management(自动内存管理),Data Guard enhancements(数据保护增强)和Real Application Clusters(RAC)的改进等。 2. **数据库安装与配置*...

    oracle 11g新特性

    ### Oracle 11g 新特性解析 #### 一、引言 Oracle 11g作为Oracle数据库的一个重要版本,引入了一系列新的特性和改进,旨在提高数据处理能力、增强安全性、简化管理和提升性能。本文将详细介绍Oracle 11g中与数据库...

    Oracle_Database_11g完全参考手册1

    9. **Partitioning Enhancements**:分区是数据库管理和优化的关键技术,Oracle 11g增加了许多分区增强功能,如范围分区、列表分区、复合分区和本地索引等。 10. **Database Vault**:这个特性增强了数据库的安全性...

    Oracle10G_Client

    8. **Performance Enhancements**:Oracle10G在性能方面有许多改进,如更快的查询处理、自动内存管理、并行执行等,提高了数据库的响应速度和整体性能。 9. **Security增强**:Oracle10G引入了更强的身份验证、授权...

    oracle weblogic server 11g:administration essentials

    Oracle WebLogic Server 11g: Administration Essentials 是一套全面的学习资源,旨在帮助用户掌握WebLogic Server的基础知识,尤其适合初学者。WebLogic Server是Oracle公司的一款企业级Java应用服务器,它提供了一...

    DBA手册(Oracle 11g)

    ### DBA手册(Oracle 11g)关键知识点解析 #### 一、Oracle 11g新特性及其应用价值 1. **新特性综述**: - **Real Application Clusters (RAC)**:增强的集群功能使得多实例能够共享同一个数据库,提高可用性和...

    oracle 10g精要

    5. 性能优化:通过SQL Tuning Advisor和Automatic Workload Repository(AWR)等工具,Oracle 10g能够自动识别并优化性能瓶颈。 6. 安全性增强:Oracle 10g强化了数据安全,包括数据加密、审计和访问控制等。 二、...

    Oracle10g

    Oracle10g是Oracle公司发布的一款关系型数据库管理系统,它在数据库领域有着广泛的应用,尤其在企业级数据存储和管理方面。本压缩包包含了Oracle10g的相关参考手册和特性介绍,以下是这些文档的主要内容: 1. **Ora...

    32-oracle10g-32bit oracle10g数据库,32位,下载安装

    Oracle 10g是一款历史悠久但仍然具有广泛影响力的数据库管理系统,尤其在那些运行32位操作系统或者需要兼容旧系统的环境中。本资源提供了Oracle Database 10g的32位版本,适用于那些不能或不想升级到更高版本的用户...

    Oracle10G官方文档CHM合集 Database.rar

    6. **Partitioning Enhancements**:表分区是Oracle数据库的一个重要特性,Oracle 10G进一步增强了分区功能,如范围分区、列表分区、复合分区等,提高了大型数据集的管理和查询效率。 7. **XMLDB**:Oracle 10G内置...

Global site tag (gtag.js) - Google Analytics