`
younglibin
  • 浏览: 1213853 次
  • 性别: Icon_minigender_1
  • 来自: 北京
社区版块
存档分类
最新评论

Python yield 使用浅析

阅读更多

令另外参考:

 

http://www.jb51.net/article/15717.htm

http://www.ibm.com/developerworks/cn/opensource/os-cn-python-yield/

您可能听说过,带有 yield 的函数在 Python 中被称之为 generator(生成器),何谓 generator ?

我们先抛开 generator,以一个常见的编程题目来展示 yield 的概念。

如何生成斐波那契數列

斐波那契(Fibonacci)數列是一个非常简单的递归数列,除第一个和第二个数外,任意一个数都可由前两个数相加得到。用计算机程序输出斐波那契數列的前 N 个数是一个非常简单的问题,许多初学者都可以轻易写出如下函数:


清单 1. 简单输出斐波那契數列前 N 个数

				
 def fab(max): 
    n, a, b = 0, 0, 1 
    while n < max: 
        print b 
        a, b = b, a + b 
        n = n + 1 

 

执行 fab(5),我们可以得到如下输出:

 >>> fab(5) 
 1 
 1 
 2 
 3 
 5 

 

结果没有问题,但有经验的开发者会指出,直接在 fab 函数中用 print 打印数字会导致该函数可复用性较差,因为 fab 函数返回 None,其他函数无法获得该函数生成的数列。

要提高 fab 函数的可复用性,最好不要直接打印出数列,而是返回一个 List。以下是 fab 函数改写后的第二个版本:


清单 2. 输出斐波那契數列前 N 个数第二版

				
 def fab(max): 
    n, a, b = 0, 0, 1 
    L = [] 
    while n < max: 
        L.append(b) 
        a, b = b, a + b 
        n = n + 1 
    return L 

 

可以使用如下方式打印出 fab 函数返回的 List:

 >>> for n in fab(5): 
 ...     print n 
 ... 
 1 
 1 
 2 
 3 
 5 

 

改写后的 fab 函数通过返回 List 能满足复用性的要求,但是更有经验的开发者会指出,该函数在运行中占用的内存会随着参数 max 的增大而增大,如果要控制内存占用,最好不要用 List

来保存中间结果,而是通过 iterable 对象来迭代。例如,在 Python2.x 中,代码:


清单 3. 通过 iterable 对象来迭代

				
 for i in range(1000): pass 

 

会导致生成一个 1000 个元素的 List,而代码:

 for i in xrange(1000): pass 

 

则不会生成一个 1000 个元素的 List,而是在每次迭代中返回下一个数值,内存空间占用很小。因为 xrange 不返回 List,而是返回一个 iterable 对象。

利用 iterable 我们可以把 fab 函数改写为一个支持 iterable 的 class,以下是第三个版本的 Fab:


清单 4. 第三个版本

				
 class Fab(object): 

    def __init__(self, max): 
        self.max = max 
        self.n, self.a, self.b = 0, 0, 1 

    def __iter__(self): 
        return self 

    def next(self): 
        if self.n < self.max: 
            r = self.b 
            self.a, self.b = self.b, self.a + self.b 
            self.n = self.n + 1 
            return r 
        raise StopIteration() 

 

Fab 类通过 next() 不断返回数列的下一个数,内存占用始终为常数:

 >>> for n in Fab(5): 
 ...     print n 
 ... 
 1 
 1 
 2 
 3 
 5 

 

然而,使用 class 改写的这个版本,代码远远没有第一版的 fab 函数来得简洁。如果我们想要保持第一版 fab 函数的简洁性,同时又要获得 iterable 的效果,yield 就派上用场了:


清单 5. 使用 yield 的第四版

				
 def fab(max): 
    n, a, b = 0, 0, 1 
    while n < max: 
        yield b 
        # print b 
        a, b = b, a + b 
        n = n + 1 

'''

 

第四个版本的 fab 和第一版相比,仅仅把 print b 改为了 yield b,就在保持简洁性的同时获得了 iterable 的效果。

调用第四版的 fab 和第二版的 fab 完全一致:

 >>> for n in fab(5): 
 ...     print n 
 ... 
 1 
 1 
 2 
 3 
 5 

 

简单地讲,yield 的作用就是把一个函数变成一个 generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator,调用 fab(5) 不会执行 fab 函数,而是返回一个 iterable 对象!在 for 循环执行时,每次循环都会执行 fab 函数内部的代码,执行到 yield b 时,fab 函数就返回一个迭代值,下次迭代时,代码从 yield b 的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield。

也可以手动调用 fab(5) 的 next() 方法(因为 fab(5) 是一个 generator 对象,该对象具有 next() 方法),这样我们就可以更清楚地看到 fab 的执行流程:


清单 6. 执行流程

				
 >>> f = fab(5) 
 >>> f.next() 
 1 
 >>> f.next() 
 1 
 >>> f.next() 
 2 
 >>> f.next() 
 3 
 >>> f.next() 
 5 
 >>> f.next() 
 Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
 StopIteration 

 

当函数执行结束时,generator 自动抛出 StopIteration 异常,表示迭代完成。在 for 循环里,无需处理 StopIteration 异常,循环会正常结束。

我们可以得出以下结论:

一个带有 yield 的函数就是一个 generator,它和普通函数不同,生成一个 generator 看起来像函数调用,但不会执行任何函数代码,直到对其调用 next()(在 for 循环中会自动调用 next())才开始执行。虽然执行流程仍按函数的流程执行,但每执行到一个 yield 语句就会中断,并返回一个迭代值,下次执行时从 yield 的下一个语句继续执行。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。

yield 的好处是显而易见的,把一个函数改写为一个 generator 就获得了迭代能力,比起用类的实例保存状态来计算下一个 next() 的值,不仅代码简洁,而且执行流程异常清晰。

如何判断一个函数是否是一个特殊的 generator 函数?可以利用 isgeneratorfunction 判断:


清单 7. 使用 isgeneratorfunction 判断

				
 >>> from inspect import isgeneratorfunction 
 >>> isgeneratorfunction(fab) 
 True 

 

要注意区分 fab 和 fab(5),fab 是一个 generator function,而 fab(5) 是调用 fab 返回的一个 generator,好比类的定义和类的实例的区别:


清单 8. 类的定义和类的实例

				
 >>> import types 
 >>> isinstance(fab, types.GeneratorType) 
 False 
 >>> isinstance(fab(5), types.GeneratorType) 
 True 

 

fab 是无法迭代的,而 fab(5) 是可迭代的:

 >>> from collections import Iterable 
 >>> isinstance(fab, Iterable) 
 False 
 >>> isinstance(fab(5), Iterable) 
 True 

 

每次调用 fab 函数都会生成一个新的 generator 实例,各实例互不影响:

 >>> f1 = fab(3) 
 >>> f2 = fab(5) 
 >>> print 'f1:', f1.next() 
 f1: 1 
 >>> print 'f2:', f2.next() 
 f2: 1 
 >>> print 'f1:', f1.next() 
 f1: 1 
 >>> print 'f2:', f2.next() 
 f2: 1 
 >>> print 'f1:', f1.next() 
 f1: 2 
 >>> print 'f2:', f2.next() 
 f2: 2 
 >>> print 'f2:', f2.next() 
 f2: 3 
 >>> print 'f2:', f2.next() 
 f2: 5 

 

 

return 的作用

在一个 generator function 中,如果没有 return,则默认执行至函数完毕,如果在执行过程中 return,则直接抛出 StopIteration 终止迭代。

 

另一个例子

另一个 yield 的例子来源于文件读取。如果直接对文件对象调用 read() 方法,会导致不可预测的内存占用。好的方法是利用固定长度的缓冲区来不断读取文件内容。通过 yield,我们不再需要编写读文件的迭代类,就可以轻松实现文件读取:


清单 9. 另一个 yield 的例子

				
 def read_file(fpath): 
    BLOCK_SIZE = 1024 
    with open(fpath, 'rb') as f: 
        while True: 
            block = f.read(BLOCK_SIZE) 
            if block: 
                yield block 
            else: 
                return 

 

以上仅仅简单介绍了 yield 的基本概念和用法,yield 在 Python 3 中还有更强大的用法,我们会在后续文章中讨论。

注:本文的代码均在 Python 2.7 中调试通过

分享到:
评论

相关推荐

    Python yield 使用方法浅析

    ### Python `yield` 使用方法浅析 #### 一、引言 在Python中,`yield` 是一个强大的关键字,它可以将一个普通的函数转换为生成器(generator)。与传统的函数不同,生成器允许我们在代码中“暂停”并保存当前的状态,...

    深入浅析Python中的yield关键字

    python中有一个非常有用的语法叫做生成器,所利用到的关键字就是yield。有效利用生成器这个工具可以有效地节约系统资源,避免不必要的内存占用。 一段代码 def fun(): for i in range(20): x=yield i print('good...

    Python中的yield浅析

    在介绍yield前有必要先说明下Python中的迭代器(iterator)和生成器(constructor)。 一、迭代器(iterator) 在Python中,for循环可以用于Python中的任何类型,包括列表、元祖等等,实际上,for循环可用于任何“可迭代...

    浅析Python中yield关键词的作用与用法

    在Python编程语言中,`yield`关键字是一个非常重要的特性,它与生成器(generator)紧密相关。...了解并熟练使用`yield`和生成器是Python程序员必备的技能,能够帮助编写更加高效和内存友好的代码。

    浅析Python生成器.pdf

    浅析 Python 生成器 在 Python 中,生成器(generator)是一种特殊的可迭代对象,它可以在循环中动态地计算和生成元素,而不需要事先创建一个完整的列表。这种机制可以大大节省内存空间,提高程序的效率。 什么是...

    深入浅析python 协程与go协程的区别

    【深入浅析Python协程与Go协程的区别】 在计算机科学中,进程、线程和协程是并发执行任务的三种基本方式。进程是程序在操作系统中的实例,包含内存空间和资源;线程是进程中的执行单元,是CPU调度的基本单位,同一...

    浅析python协程相关概念

    本文将深入探讨Python协程的基本概念、历史背景以及如何使用它们。 协程的历史可以从生成器说起。生成器是一种特殊的迭代器,它可以在运行时生成值,而不是一次性计算所有值并存储在内存中。在Python中,生成器通过...

    深入浅析Python中的迭代器

    ### 深入浅析Python中的迭代器 #### 一、引言 在Python编程语言中,迭代器是一个非常重要的概念。它不仅帮助开发者高效地处理数据,还为理解和使用高级特性如生成器等奠定了基础。本文将详细介绍迭代器的概念、实现...

Global site tag (gtag.js) - Google Analytics